dc.contributor.author | Bashmakov, Stepan I. | |
dc.contributor.author | Zvereva, Tatyana Yu. | |
dc.date.accessioned | 2022-11-07T14:09:16Z | |
dc.date.available | 2022-11-07T14:09:16Z | |
dc.date.issued | 2022-09-09 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/44038 | |
dc.description.abstract | This paper proposes a semantic description of the linear step-like temporal multi-agent logic with the universal modality \(\mathcal{LTK}.sl_U\) based on the idea of non-reflexive non-transitive nature of time. We proved a finite model property and projective unification for this logic. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | multi-agent system | en |
dc.subject | Kripke semantic | en |
dc.subject | unification | en |
dc.subject | modal logic | en |
dc.subject | non-transitive time | en |
dc.subject | step-like | en |
dc.subject | universal modality | en |
dc.subject | finite model property | en |
dc.subject | p-morphism | en |
dc.title | Unification and Finite Model Property for Linear Step-Like Temporal Multi-Agent Logic with the Universal Modality | en |
dc.type | Other | |
dc.page.number | 345-361 | |
dc.contributor.authorAffiliation | Bashmakov, Stepan I. - Siberian Federal University, Department of Algebra and Mathematical Logic, 660041, Svobodny #79, Krasnoyarsk, Russia | en |
dc.contributor.authorAffiliation | Zvereva, Tatyana Yu. - Siberian Federal University, Department of Algebra and Mathematical Logic, 660041, Svobodny #79, Krasnoyarsk, Russia | en |
dc.identifier.eissn | 2449-836X | |
dc.references | S. I. Bashmakov, Unification and inference rules in the multi-modal logic of knowledge and linear time LTK, Journal of Siberian Federal University. Mathematics & Physics, vol. 9(2) (2016), pp. 149–157, DOI: https://doi.org/10.17516/1997-1397-2016-9-2-149-157 | en |
dc.references | S. I. Bashmakov, Unification in linear modal logic on non-transitive time with the universal modality, Journal of Siberian Federal University. Mathematics & Physics, vol. 11(1) (2018), pp. 3–9, DOI: https://doi.org/10.17516/1997-1397-2018-11-1-3-9 | en |
dc.references | S. I. Bashmakov, Unification in linear multi-modal logic of knowledge and non-transitive time, [in:] Handbook of the 6th World Congress and School on Universal Logic, Vichy, France, Université Clermont Auvergne (2018), pp. 229–231, URL: https://hal-centralesupelec.archives-ouvertes.fr/hal-01812182/file/handbook-unilog2018-web_19-6-2018.pdf | en |
dc.references | S. I. Bashmakov, Unification in pretabular extensions of S4, Logica Universalis, vol. 15 (2021), pp. 381–397, DOI: https://doi.org/10.1007/s11787-021-00287-0 | en |
dc.references | S. I. Bashmakov, A. V. Kosheleva, V. V. Rybakov, Non-unifiability in linear temporal logic of knowledge with multi-agent relations, Siberian Electronic Mathematical Reports, vol. 13 (2016), pp. 656–663, DOI: https://doi.org/10.17377/semi.2016.13.052 | en |
dc.references | S. I. Bashmakov, A. V. Kosheleva, V. V. Rybakov, Unification for multi-agent temporal logics with universal modality, Journal of Applied Logics — IfCoLog Journal of Logics and their Application, vol. 4(4) (2017), pp. 939–954. | en |
dc.references | B. Bennett, C. Dixon, M. Fisher, U. Hustadt, E. Franconi, I. Horrocks, M. de Rijke, Combinations of Modal Logics, Artificial Intelligence Review, vol. 17 (2002), pp. 1–20, DOI: https://doi.org/10.1023/A:1015057926707 | en |
dc.references | S. Borgo, Quantificational modal logic with sequential Kripke semantics, Journal of Applied Non-Classical Logics, vol. 15(2) (2005), pp. 137–188, DOI: https://doi.org/10.3166/jancl.15.137-188 | en |
dc.references | E. Calardo, V. V. Rybakov, An axiomatisation for the multi-modal logic of knowledge and linear time LTK, Logic Journal of the IGPL, vol. 15(3) (2007), pp. 239–254, DOI: https://doi.org/10.1093/jigpal/jzm010 | en |
dc.references | E. Clarke, O. Grumberg, K. Hamaguchi, Another Look at LTL Model Checking, Formal Methods in System Design, vol. 10 (1997), pp. 47–71, DOI: https://doi.org/10.1023/A:1008615614281 | en |
dc.references | W. Dzik, Unitary unification of S5 modal logic and its extensions, Bulletin of the Section of Logic, vol. 32(1–2) (2003), pp. 19–26. | en |
dc.references | S. Ghilardi, Unification through projectivity, Journal of Logic Computation, vol. 7(6) (1997), pp. 733–752, DOI: https://doi.org/10.1093/logcom/7.6.733 | en |
dc.references | S. Ghilardi, Unification in intuitionistic logic, Journal of Symbolic Logic, vol. 64(2) (1999), pp. 859–880, DOI: https://doi.org/10.2307/2586506 | en |
dc.references | V. Goranko, S. Passy, Using the universal modality: Gains and questions, Journal of Logic and Computation, vol. 2(1) (1992), pp. 5–30, DOI: https://doi.org/10.1093/logcom/2.1.5 | en |
dc.references | Y. Liu, X. Liu, Application of Mathematics in Computer Field, [in:] Z. Xu, R. Parizi, M. Hammoudeh, O. Loyola-González (eds.), Cyber Security Intelligence and Analytics. CSIA 2020, vol. 1147 of Advances in Intelligent Systems and Computing, Springer, Cham (2020), pp. 413–419, DOI: https://doi.org/10.1007/978-3-030-43309-3_57 | en |
dc.references | A. N. Luk’yanchuk, V. V. Rimatskii, An axiomatization for the linear logic of knowledge and time LTKr with intransitive time relation, Siberian Mathematical Journal, vol. 54 (2013), pp. 1037–1045, DOI: https://doi.org/10.1134/S0037446613060104 | en |
dc.references | W. A. Pogorzelski, P. Wojtylak, Completeness theory for propositional logics, Studies in Universal Logic, Birkhäuser Basel (2008). | en |
dc.references | V. V. Rybakov, An essay on unification and inference rules for modal logics, Bulletin of the Section of Logic, vol. 28 (1999), pp. 145–157. | en |
dc.references | V. V. Rybakov, Best unifiers in transitive modal logics, Studia Logica, vol. 99 (2011), pp. 321–336, DOI: https://doi.org/10.1007/s11225-011-9354-y | en |
dc.references | V. F. Yun, Polymodal logic of the class of inductive linear time frames, Siberian Electronic Mathematical Reports, vol. 12 (2015), pp. 421–431, DOI: https://doi.org/10.17377/semi.2015.12.035 | en |
dc.contributor.authorEmail | Bashmakov, Stepan I. - krauder@mail.ru | |
dc.contributor.authorEmail | Zvereva, Tatyana Yu. - 3336259@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2022.16 | |
dc.relation.volume | 51 | |