Pokaż uproszczony rekord

dc.contributor.authorYiarayong, Pairote
dc.date.accessioned2022-11-07T14:09:18Z
dc.date.available2022-11-07T14:09:18Z
dc.date.issued2022-09-14
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/44040
dc.description.abstractThe aim of this manuscript is to introduce the \((\alpha,\beta)\)-hesitant fuzzy set and apply it to semigroups. In this paper, as a generalization of the concept of hesitant fuzzy sets to semigroup theory, the concept of \((\alpha,\beta)\)-hesitant fuzzy subsemigroups of semigroups is introduced, and related properties are discussed. Furthermore, we define and study \((\alpha,\beta)\)-hesitant fuzzy ideals on semigroups. In particular, we investigate the structure of \((\alpha,\beta)\)-hesitant fuzzy ideal generated by a hesitant fuzzy ideal in a semigroup. In addition, we also introduce the concepts of \((\alpha,\beta)\)-hesitant fuzzy semiprime sets of semigroups, and characterize regular semigroups in terms of \((\alpha,\beta)\)-hesitant fuzzy left ideals and \((\alpha,\beta)\)-hesitant fuzzy right ideals. Finally, several characterizations of regular and intra-regular semigroups by the properties of \((\alpha,\beta)\)-hesitant ideals are given.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject\({}^\alpha\)-hesitant (\({}_\alpha\)-hesitant) fuzzy seten
dc.subject\((\alpha,\beta)\)-hesitant fuzzy semigroupen
dc.subject\((\alpha,\beta)\)-hesitant fuzzy idealen
dc.subject\((\alpha,\beta)\)-hesitant fuzzy semiprime seten
dc.subjectregular semigroupen
dc.titleAn (α,β)-Hesitant Fuzzy Set Approach to Ideal Theory in Semigroupsen
dc.typeOther
dc.page.number383-409
dc.contributor.authorAffiliationPibulsongkram Rajabhat University, Department of Mathematics, Faculty of Science and Technology, Phitsanulok 65000, Thailanden
dc.identifier.eissn2449-836X
dc.referencesM. Y. Abbasi, A. F. Talee, S. A. Khan, K. Hila, A hesitant fuzzy set approach to ideal theory in Γ-semigroups, Advances in Fuzzy Systems, vol. 2018 (2018), p. 5738024, DOI: https://doi.org/10.1155/2018/5738024en
dc.referencesM. Y. Abbasi, A. F. Talee, X. Xie, S. A. Khan, Hesitant fuzzy ideal extension in po-semigroups, Journal of Applied and Engineering Mathematics, vol. 8(2) (2018), pp. 509–521, URL: http://jaem.isikun.edu.tr/web/images/articles/vol.8.no.2/16.pdfen
dc.referencesK. Arulmozhi, V. Chinnadurai, A. Swaminathan, Interval valued bipolar fuzzy ideals in ordered Γ-semigroups, Journal of International Mathematical Virtual Institute, vol. 9(2) (2019), pp. 1–17, URL: http://www.imvibl.org/journal/9_19/journal_imvi_89_2019_1_17.pdfen
dc.referencesM. Cheong, K. Hur, Interval-valued fuzzy ideals and bi-ideals of a semigroup, International Journal of Fuzzy Logic and Intelligent Systems, vol. 11(4) (2019), pp. 259–266, DOI: https://doi.org/10.5391/IJFIS.2011.11.4.259.en
dc.referencesM. Gulistan, M. Shahzad, F. Ahmad, M. Azam, S. Nawaz, Hesitant fuzzy Abel-Grassmann’s groupoids, Science International (Lahore), vol. 28(1) (2016), pp. 19–25, URL: http://www.sci-int.com/pdf/636911097513073130.pdfen
dc.referencesY. B. Jun, S. S. Ahn, G. Muhiuddin, Hesitant fuzzy soft subalgebras and ideals in BCK/BCI-algebras, The Scientific World Journal, vol. 2014(Article ID 763929) (2014), pp. 1–8, DOI: https://doi.org/10.1155/2014/763929en
dc.referencesY. B. Jun, K. J. Lee, S. Z. Song, Hesitant fuzzy bi-ideals in semigroups, Communications of the Korean Mathematical Society, vol. 30(3) (2015), pp. 143–154, DOI: https://doi.org/10.4134/CKMS.2015.30.3.143en
dc.referencesA. Khan, M. Z. A. Y. B. Jun, Characterizations of ordered semigroups in terms of (∈,∈∨q)-fuzzy interior ideals, Neural Computing and Applications, vol. 21 (2012), pp. 433–440, DOI: https://doi.org/10.1007/s00521-010-0463-8en
dc.referencesH. U. Khan, N. H. Sarmin, A. Khan, F. M. Khan, Classification of ordered semigroups in terms of generalized interval-valued fuzzy interior ideals, Journal of Intelligent Systems, vol. 25(2) (2016), pp. 297–318, DOI: https://doi.org/10.1515/jisys-2015-0035en
dc.referencesP. Mosrijai, A. Satirad, A. Iampan, New types of hesitant fuzzy sets on UP-algebras, Mathematica Moravica, vol. 22(2) (2018), pp. 29–39, DOI: https://doi.org/10.5937/MatMor1802029Men
dc.referencesG. Muhiuddin, S. Aldhafeeri, Subalgebras and ideals in BCK/BCI-algebras based on Uni-hesitant fuzzy set theory, European Journal of Pure and Applied Mathematics, vol. 11(2) (2018), pp. 417–430, DOI: https://doi.org/10.29020/nybg.ejpam.v11i2.3246en
dc.referencesR. M. Rodriguez, L. Martinez, F. Herrera, Hesitant fuzzy linguistic term sets for decision making, IEEE Transactions on Fuzzy Systems, vol. 20(1) (2012), pp. 109–119, DOI: https://doi.org/10.1109/TFUZZ.2011.2170076en
dc.referencesS. Z. Song, H. Bordbar, Y. B. Jun, A new type of hesitant fuzzy subalgebras and ideals in BCK/BCI-algebras, Journal of Intelligent and Fuzzy Systems, vol. 32 (2017), pp. 2009–2016, DOI: https://doi.org/10.3233/JIFS-161601en
dc.referencesA. F. Talee, M. Y. Abbasi, S. A. Khan, Hesitant fuzzy ideals in semigroups with two frontiers, Journal of Basic and Applied Engineering Research, vol. 4(6) (2017), pp. 385–388.en
dc.referencesJ. Tang, B. Davvaz, X. Xie, A study on (fuzzy) quasi-Γ-hyperideals in ordered Γ-semihypergroups, Journal of Intelligent and Fuzzy Systems, vol. 32 (2017), pp. 3821–3838, DOI: https://doi.org/10.3233/IFS-162117en
dc.referencesF. Q. Wang, X. Li, X. H. Chen, Hesitant fuzzy soft set and its applications in multicriteria decision making, Journal of Applied Mathematics, vol. 2014(Article ID 643785) (2014), pp. 1–10, DOI: https://doi.org/10.1155/2014/643785en
dc.referencesP. Yairayong, Applications of hesitant fuzzy sets to completely regular semigroups, IAENG International Journal of Computer Science, vol. 47(1) (2020), pp. 107–118, URL: http://www.iaeng.org/IJCS/issues_v47/issue_1/IJCS_47_1_13.pdfen
dc.referencesN. Yaqoob, Interval valued intuitionistic fuzzy ideals of regular LA-semigroups, Thai Journal of Mathematics, vol. 11(3) (2013), pp. 683–695, URL: http://thaijmath.in.cmu.ac.th/index.php/thaijmath/article/view/735/566en
dc.referencesP. Yiarayong, Applications of hesitant fuzzy sets to ternary semigroups, Heliyon, vol. 6(4) (2020), p. e03668, DOI: https://doi.org/10.1016/j.heliyon.2020.e03668en
dc.referencesP. Yiarayong, Semigroup characterized by picture fuzzy sets, International Journal of Innovative Computing, Information and Control, vol. 16(6) (2020), pp. 2121–2130, DOI: https://doi.org/10.24507/ijicic.16.06.2121en
dc.contributor.authorEmailpairote0027@hotmail.com
dc.identifier.doi10.18778/0138-0680.2022.13
dc.relation.volume51


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0