Pokaż uproszczony rekord

dc.contributor.authorSayed Ahmed, Tarek
dc.date.accessioned2022-11-07T14:09:18Z
dc.date.available2022-11-07T14:09:18Z
dc.date.issued2022-09-09
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/44041
dc.description.abstractLet \(2<n<\omega\). Then \({\sf CA}_n\) denotes the class of cylindric algebras of dimension \(n\), \({\sf RCA}_n\) denotes the class of representable \(\sf CA_n\)s, \({\sf CRCA}_n\) denotes the class of completely representable \({\sf CA}_n\)s, and \({\sf Nr}_n{\sf CA}_{\omega}(\subseteq {\sf CA}_n\)) denotes the class of \(n\)-neat reducts of \({\sf CA}_{\omega}\)s. The elementary closure of the class \({\sf CRCA}_n\)s (\(\mathbf{K_n}\)) and the non-elementary class \({\sf At}({\sf Nr}_n{\sf CA}_{\omega})\) are characterized using two-player zero-sum games, where \({\sf At}\) is the operator of forming atom structures. It is shown that \(\mathbf{K_n}\) is not finitely axiomatizable and that it coincides with the class of atomic algebras in the elementary closure of \(\mathbf{S_c}{\sf Nr}_n{\sf CA}_{\omega}\) where \(\mathbf{S_c}\) is the operation of forming complete subalgebras. For any class \(\mathbf{L}\) such that \({\sf At}{\sf Nr}_n{\sf CA}_{\omega}\subseteq \mathbf{L}\subseteq {\sf At}\mathbf{K_n}\), it is proved that \({\bf SP}\mathfrak{Cm}\mathbf{L}={\sf RCA}_n\), where \({\sf Cm}\) is the dual operator to \(\sf At\); that of forming complex algebras. It is also shown that any class \(\mathbf{K}\) between \({\sf CRCA}_n\cap \mathbf{S_d}{\sf Nr}_n{\sf CA}_{\omega}\) and \(\mathbf{S_c}{\sf Nr}_n{\sf CA}_{n+3}\) is not first order definable, where \(\mathbf{S_d}\) is the operation of forming dense subalgebras, and that for any \(2<n<m\), any \(l\geq n+3\) any any class \(\mathbf{K}\) (such that \({\sf At}({\sf Nr}_n{\sf CA}_{m})\cap {\sf CRCA}_n\subseteq \mathbf{K}\subseteq {\sf At}\mathbf{S_c}{\sf Nr}_n{\sf CA}_{l}\), \(\mathbf{K}\) is not not first order definable either.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectalgebraic logicen
dc.subjectcylindric algebrasen
dc.subjectrelation algebrasen
dc.subjectatom-canonicityen
dc.subjectcombinatorial game theoryen
dc.titleComplete Representations and Neat Embeddingsen
dc.typeOther
dc.page.number411-453
dc.contributor.authorAffiliationCairo University, Department of Mathematics, Faculty of Science, Giza, Egypten
dc.identifier.eissn2449-836X
dc.referencesH. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer, Berlin, Heidelberg (2012), DOI: https://doi.org/10.1007/978-3-642-35025-2en
dc.referencesH. Andréka, I. Németi, T. Sayed Ahmed, Omitting types for finite variable fragments and complete representations, Journal of Symbolic Logic, vol. 73(1) (2008), pp. 65–89, DOI: https://doi.org/10.2178/jsl/1208358743en
dc.referencesL. Henkin, J. Monk, A. Tarski, Cylindric Algebras Part II, no. 115 in Studies in Logic and the Foundations of Mathematics, North-Holland, Amsterdam (1985), DOI: https://doi.org/10.1016/S0049-237X(08)70001-6en
dc.referencesR. Hirsch, Relation algebra reducts of cylindric algebras and complete representations, Journal of Symbolic Logic, vol. 72(2) (2007), pp. 673–703, DOI: https://doi.org/10.2178/jsl/1185803629en
dc.referencesR. Hirsch, I. Hodkinson, Complete representations in algebraic logic, Journal of Symbolic Logic, vol. 62(3) (1997), pp. 816–847, DOI: https://doi.org/10.2307/2275574en
dc.referencesR. Hirsch, I. Hodkinson, Relation algebras by games, vol. 147 of Studies in Logic and the Foundations of Mathematics, Elsevier, Amsterdam (2002), DOI: https://doi.org/10.1016/S0049-237X(02)80054-4en
dc.referencesR. Hirsch, I. Hodkinson, Completions and complete representations, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer, Berlin, Heidelberg (2012), pp. 61–90, DOI: https://doi.org/10.1007/978-3-642-35025-2_4en
dc.referencesR. Hirsch, I. Hodkinson, R. Maddux, Relation algebra reducts of cylindric algebras and an application to proof theory, Journal of Symbolic Logic, vol. 67(1) (2002), pp. 197–213, DOI: https://doi.org/10.2178/jsl/1190150037en
dc.referencesR. Hirsch, T. Sayed Ahmed, The neat embedding problem for algebras other than cylindric algebras and for infinite dimensions, Journal of Symbolic Logic, vol. 79(1) (2014), pp. 208–222, DOI: https://doi.org/10.1017/jsl.2013.20en
dc.referencesI. Hodkinson, Atom structures of relation and cylindric algebras, Annals of Pure and Applied Logic, vol. 89(2–3) (1997), pp. 117–148, DOI: https://doi.org/10.1016/S0168-0072(97)00015-8en
dc.referencesT. Sayed Ahmed, The class of neat reducts is not elementary, Logic Journal of the IGPL, vol. 9(4) (2001), pp. 593–628, DOI: https://doi.org/10.1093/jigpal/9.4.593en
dc.referencesT. Sayed Ahmed, Neat embedding is not sufficient for complete representations, Bulletin of the Section of Logic, vol. 36(1) (2007), pp. 29–36.en
dc.referencesT. Sayed Ahmed, Completions, complete representations and omitting types, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer, Berlin, Heidelberg (2012), pp. 186–205, DOI: https://doi.org/10.1007/978-3-642-35025-2_10en
dc.referencesT. Sayed Ahmed, Neat reducts and neat embeddings in cylindric algebras, [in:] H. Andréka, M. Ferenczi, I. Németi (eds.), Cylindric-like Algebras and Algebraic Logic, vol. 22 of Bolyai Society Mathematical Studies, Springer, Berlin, Heidelberg (2012), pp. 105–134, DOI: https://doi.org/10.1007/978-3-642-35025-2_6en
dc.referencesT. Sayed Ahmed, Various notions of represetability for cylindric and polyadic algebras, Studia Scientiarum Mathematicarum Hungarica, vol. 56(3) (2019), pp. 335–363, DOI: https://doi.org/10.1556/012.2019.56.3.1436en
dc.referencesT. Sayed Ahmed, Blow up and Blow constructions in Algebraic Logic, [in:] J. Madarász, G. Székely (eds.), Hajnal Andréka and István Németi on Unity of Science. From Computing to Relativity Theory Through Algebraic Logic, vol. 19 of Outstanding Contributions to Logic, Springer, Cham (2021), pp. 347–359, DOI: https://doi.org/10.1007/978-3-030-64187-0_14en
dc.referencesT. Sayed Ahmed, I. Németi, On neat reducts of algebras of logic, Studia Logica, vol. 68(2) (2001), pp. 229–262, DOI: https://doi.org/10.1023/A:1012447223176en
dc.contributor.authorEmailrutahmed@gmail.com
dc.identifier.doi10.18778/0138-0680.2022.17
dc.relation.volume51


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0