dc.contributor.author | Przybyło, Sławomir | |
dc.contributor.author | Słomczyńska, Katarzyna | |
dc.date.accessioned | 2023-02-10T07:50:39Z | |
dc.date.available | 2023-02-10T07:50:39Z | |
dc.date.issued | 2022-10-25 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/45871 | |
dc.description.abstract | We study the variety generated by the three-element equivalential algebra with conjunction on the dense elements. We prove the representation theorem which let us construct the free algebras in this variety. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | intuitionistic logic | en |
dc.subject | Fregean varieties | en |
dc.subject | equivalential algebras | en |
dc.subject | dense elements | en |
dc.title | Equivalential Algebras with Conjunction on Dense Elements | en |
dc.type | Other | |
dc.page.number | 535-554 | |
dc.contributor.authorAffiliation | Przybyło, Sławomir - Pedagogical University, Institute of Mathematics, ul. Podchorążych 2, 30-084 Kraków, Poland | en |
dc.contributor.authorAffiliation | Słomczyńska, Katarzyna - Pedagogical University, Institute of Mathematics, ul. Podchorążych 2, 30-084 Kraków, Poland | en |
dc.identifier.eissn | 2449-836X | |
dc.references | J. Czelakowski, D. Pigozzi, Fregean logics, Annals of Pure and Applied Logic, vol. 127(1–3) (2004), pp. 17–76, DOI: https://doi.org/10.1016/j.apal.2003.11.008 | en |
dc.references | R. Freese, R. McKenzie, Commutator theory for congruence modular varieties, vol. 125 of London Mathematical Society Lecture Notes, Cambridge University Press, Cambridge (1987). | en |
dc.references | J. Hagemann, On regular and weakly regular congruences, Tech. rep., TH Darmstadt (1973), preprint no. 75. | en |
dc.references | D. Hobby, R. McKenzie, The structure of finite algebras, vol. 76 of Contemporary Mathematics, American Mathematical Society (1988), DOI: https://doi.org/10.1090/conm/076 | en |
dc.references | P. M. Idziak, K. Słomczyńska, Polynomially rich algebras, Journal of Pure and Applied Algebra, vol. 156(1) (2001), pp. 33–68, DOI: https://doi.org/10.1016/S0022-4049(99)00119-X | en |
dc.references | P. M. Idziak, K. Słomczyńska, A.Wroński, Fregean varieties, International Journal of Algebra and Computation, vol. 19(5) (2009), pp. 595–645, DOI: https://doi.org/10.1142/S0218196709005251 | en |
dc.references | P. M. Idziak, K. Słomczyńska, A. Wroński, The commutator in equivalential algebras and Fregean varieties, Algebra Universalis, vol. 65(4) (2011), pp. 331–340, DOI: https://doi.org/10.1007/s00012-011-0133-4 | en |
dc.references | J. K. Kabziński, A. Wroński, On equivalential algebras, [in:] G. Epstein, J. M. Dunn, S. C. Shapiro, N. Cocchiarella (eds.), Proceedings of the 1975 International Symposium on Multipe-Valued Logic, Indiana University, Bloomington, Indiana, IEEE Computer Society, Long Beach (1975), pp. 419–428, URL: https://apps.dtic.mil/sti/pdfs/ADA045757.pdf | en |
dc.references | P. Köhler, Brouwerian semilattices, Transactions of the American Mathematical Society, vol. 268(1) (1981), pp. 103–126, DOI: https://doi.org/10.1090/S0002-9947-1981-0628448-3 | en |
dc.references | R. McKenzie, G. McNulty, W. Taylor, Algebras, Lattices, Varieties: Volume I, AMS Chelsea Publishing, Providence, Rhode Island (1987). | en |
dc.references | S. Przybyło, Equivalential algebras with conjunction on the regular elements, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, vol. 20 (2021), pp. 63–75, DOI: https://doi.org/10.2478/aupcsm-2021-0005 | en |
dc.references | H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, vol. 125, PWN, Warszawa (1963). | en |
dc.references | K. Słomczyńska, Equivalential algebras. Part I: representation, Algebra Universalis, vol. 35(4) (1996), pp. 524–547, DOI: https://doi.org/10.1007/BF01243593 | en |
dc.references | K. Słomczyńska, Free spectra of linear equivalential algebras, The Journal of Symbolic Logic, vol. 70(4) (2005), pp. 1341–1358, DOI: https://doi.org/10.2178/jsl/1129642128 | en |
dc.references | K. Słomczyńska, Free equivalential algebras, Annals of Pure and Applied Logic, vol. 155(2) (2008), pp. 86–96, DOI: https://doi.org/10.1016/j.apal.2008.03.003 | en |
dc.references | K. Słomczyńska, Unification and projectivity in Fregean varieties, Logic Journal of the IGPL, vol. 20(1) (2011), pp. 73–93, DOI: https://doi.org/10.1093/jigpal/jzr026 | en |
dc.references | K. Słomczyńska, The structure of completely meet irreducible congruences in strongly Fregean algebras, Algebra universalis, vol. 83 (2022), DOI: https://doi.org/10.1007/s00012-022-00787-0 article number: 31. | en |
dc.references | M. H. Stone, The theory of representation for Boolean algebras, Transactions of the American Mathematical Society, vol. 40(1) (1936), pp. 37–111, DOI: https://doi.org/10.2307/1989664 | en |
dc.references | A. Wroński, On the free equivalential algebra with three generators, Bulletin of the Section of Logic, vol. 22 (1993), pp. 37–39. | en |
dc.contributor.authorEmail | Przybyło, Sławomir - slawomir.przybylo@up.krakow.pl | |
dc.contributor.authorEmail | Słomczyńska, Katarzyna - irena.korwin-slomczynska@up.krakow.pl | |
dc.identifier.doi | 10.18778/0138-0680.2022.22 | |
dc.relation.volume | 51 | |