Pokaż uproszczony rekord

dc.contributor.authorPrzybyło, Sławomir
dc.contributor.authorSłomczyńska, Katarzyna
dc.date.accessioned2023-02-10T07:50:39Z
dc.date.available2023-02-10T07:50:39Z
dc.date.issued2022-10-25
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/45871
dc.description.abstractWe study the variety generated by the three-element equivalential algebra with conjunction on the dense elements. We prove the representation theorem which let us construct the free algebras in this variety.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectintuitionistic logicen
dc.subjectFregean varietiesen
dc.subjectequivalential algebrasen
dc.subjectdense elementsen
dc.titleEquivalential Algebras with Conjunction on Dense Elementsen
dc.typeOther
dc.page.number535-554
dc.contributor.authorAffiliationPrzybyło, Sławomir - Pedagogical University, Institute of Mathematics, ul. Podchorążych 2, 30-084 Kraków, Polanden
dc.contributor.authorAffiliationSłomczyńska, Katarzyna - Pedagogical University, Institute of Mathematics, ul. Podchorążych 2, 30-084 Kraków, Polanden
dc.identifier.eissn2449-836X
dc.referencesJ. Czelakowski, D. Pigozzi, Fregean logics, Annals of Pure and Applied Logic, vol. 127(1–3) (2004), pp. 17–76, DOI: https://doi.org/10.1016/j.apal.2003.11.008en
dc.referencesR. Freese, R. McKenzie, Commutator theory for congruence modular varieties, vol. 125 of London Mathematical Society Lecture Notes, Cambridge University Press, Cambridge (1987).en
dc.referencesJ. Hagemann, On regular and weakly regular congruences, Tech. rep., TH Darmstadt (1973), preprint no. 75.en
dc.referencesD. Hobby, R. McKenzie, The structure of finite algebras, vol. 76 of Contemporary Mathematics, American Mathematical Society (1988), DOI: https://doi.org/10.1090/conm/076en
dc.referencesP. M. Idziak, K. Słomczyńska, Polynomially rich algebras, Journal of Pure and Applied Algebra, vol. 156(1) (2001), pp. 33–68, DOI: https://doi.org/10.1016/S0022-4049(99)00119-Xen
dc.referencesP. M. Idziak, K. Słomczyńska, A.Wroński, Fregean varieties, International Journal of Algebra and Computation, vol. 19(5) (2009), pp. 595–645, DOI: https://doi.org/10.1142/S0218196709005251en
dc.referencesP. M. Idziak, K. Słomczyńska, A. Wroński, The commutator in equivalential algebras and Fregean varieties, Algebra Universalis, vol. 65(4) (2011), pp. 331–340, DOI: https://doi.org/10.1007/s00012-011-0133-4en
dc.referencesJ. K. Kabziński, A. Wroński, On equivalential algebras, [in:] G. Epstein, J. M. Dunn, S. C. Shapiro, N. Cocchiarella (eds.), Proceedings of the 1975 International Symposium on Multipe-Valued Logic, Indiana University, Bloomington, Indiana, IEEE Computer Society, Long Beach (1975), pp. 419–428, URL: https://apps.dtic.mil/sti/pdfs/ADA045757.pdfen
dc.referencesP. Köhler, Brouwerian semilattices, Transactions of the American Mathematical Society, vol. 268(1) (1981), pp. 103–126, DOI: https://doi.org/10.1090/S0002-9947-1981-0628448-3en
dc.referencesR. McKenzie, G. McNulty, W. Taylor, Algebras, Lattices, Varieties: Volume I, AMS Chelsea Publishing, Providence, Rhode Island (1987).en
dc.referencesS. Przybyło, Equivalential algebras with conjunction on the regular elements, Annales Universitatis Paedagogicae Cracoviensis Studia Mathematica, vol. 20 (2021), pp. 63–75, DOI: https://doi.org/10.2478/aupcsm-2021-0005en
dc.referencesH. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, vol. 125, PWN, Warszawa (1963).en
dc.referencesK. Słomczyńska, Equivalential algebras. Part I: representation, Algebra Universalis, vol. 35(4) (1996), pp. 524–547, DOI: https://doi.org/10.1007/BF01243593en
dc.referencesK. Słomczyńska, Free spectra of linear equivalential algebras, The Journal of Symbolic Logic, vol. 70(4) (2005), pp. 1341–1358, DOI: https://doi.org/10.2178/jsl/1129642128en
dc.referencesK. Słomczyńska, Free equivalential algebras, Annals of Pure and Applied Logic, vol. 155(2) (2008), pp. 86–96, DOI: https://doi.org/10.1016/j.apal.2008.03.003en
dc.referencesK. Słomczyńska, Unification and projectivity in Fregean varieties, Logic Journal of the IGPL, vol. 20(1) (2011), pp. 73–93, DOI: https://doi.org/10.1093/jigpal/jzr026en
dc.referencesK. Słomczyńska, The structure of completely meet irreducible congruences in strongly Fregean algebras, Algebra universalis, vol. 83 (2022), DOI: https://doi.org/10.1007/s00012-022-00787-0 article number: 31.en
dc.referencesM. H. Stone, The theory of representation for Boolean algebras, Transactions of the American Mathematical Society, vol. 40(1) (1936), pp. 37–111, DOI: https://doi.org/10.2307/1989664en
dc.referencesA. Wroński, On the free equivalential algebra with three generators, Bulletin of the Section of Logic, vol. 22 (1993), pp. 37–39.en
dc.contributor.authorEmailPrzybyło, Sławomir - slawomir.przybylo@up.krakow.pl
dc.contributor.authorEmailSłomczyńska, Katarzyna - irena.korwin-slomczynska@up.krakow.pl
dc.identifier.doi10.18778/0138-0680.2022.22
dc.relation.volume51


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0