Show simple item record

dc.contributor.authorCornejo, Juan Manuel
dc.contributor.authorSankappanavar, Hanamantagouda P.
dc.date.accessioned2023-02-10T07:50:40Z
dc.date.available2023-02-10T07:50:40Z
dc.date.issued2022-12-14
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/45872
dc.description.abstractThe variety \(\mathbb{DHMSH}\) of dually hemimorphic semi-Heyting algebras was introduced in 2011 by the second author as an expansion of semi-Heyting algebras by a dual hemimorphism. In this paper, we focus on the variety \(\mathbb{DHMSH}\) from a logical point of view. The paper presents an extensive investigation of the logic corresponding to the variety of dually hemimorphic semi-Heyting algebras and of its axiomatic extensions, along with an equally extensive universal algebraic study of their corresponding algebraic semantics. Firstly, we present a Hilbert-style axiomatization of a new logic called "Dually hemimorphic semi-Heyting logic" (\(\mathcal{DHMSH}\), for short), as an expansion of semi-intuitionistic logic \(\mathcal{SI}\) (also called \(\mathcal{SH}\)) introduced by the first author by adding a weak negation (to be interpreted as a dual hemimorphism). We then prove that it is implicative in the sense of Rasiowa and that it is complete with respect to the variety \(\mathbb{DHMSH}\). It is deduced that the logic \(\mathcal{DHMSH}\) is algebraizable in the sense of Blok and Pigozzi, with the variety \(\mathbb{DHMSH}\) as its equivalent algebraic semantics and that the lattice of axiomatic extensions of \(\mathcal{DHMSH}\) is dually isomorphic to the lattice of subvarieties of \(\mathbb{DHMSH}\). A new axiomatization for Moisil's logic is also obtained. Secondly, we characterize the axiomatic extensions of \(\mathcal{DHMSH}\) in which the "Deduction Theorem" holds. Thirdly, we present several new logics, extending the logic \(\mathcal{DHMSH}\), corresponding to several important subvarieties of the variety \(\mathbb{DHMSH}\). These include logics corresponding to the varieties generated by two-element, three-element and some four-element dually quasi-De Morgan semi-Heyting algebras, as well as a new axiomatization for the 3-valued Łukasiewicz logic. Surprisingly, many of these logics turn out to be connexive logics, only a few of which are presented in this paper. Fourthly, we present axiomatizations for two infinite sequences of logics namely, De Morgan Gödel logics and dually pseudocomplemented Gödel logics. Fifthly, axiomatizations are also provided for logics corresponding to many subvarieties of regular dually quasi-De Morgan Stone semi-Heyting algebras, of regular De Morgan semi-Heyting algebras of level 1, and of JI-distributive semi-Heyting algebras of level 1. We conclude the paper with some open problems. Most of the logics considered in this paper are discriminator logics in the sense that they correspond to discriminator varieties. Some of them, just like the classical logic, are even primal in the sense that their corresponding varieties are generated by primal algebras.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectsemi-intuitionistic logicen
dc.subjectdually hemimorphic semi-Heyting logicen
dc.subjectdually quasi-De Morgan semi-Heyting logicen
dc.subjectDe Morgan semi-Heyting logicen
dc.subjectdually pseudocomplemented semi-Heyting logicen
dc.subjectregular dually quasi-De Morgan Stone semi-Heyting algebras of level 1en
dc.subjectimplicative logicen
dc.subjectequivalent algebraic semanticsen
dc.subjectalgebraizable logicen
dc.subjectDe Morgan Gödel logicen
dc.subjectdually pseudocomplemented Gödel logicen
dc.subjectMoisil's logicen
dc.subject3-valued Łukasiewicz logicen
dc.titleA Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensionsen
dc.typeOther
dc.page.number555-645
dc.contributor.authorAffiliationCornejo, Juan Manuel - Universidad Nacional del Sur, Departamento de Matemática, Bahía Blanca, Argentina; CONICET, INMABB, Bahía Blanca, Argentinaen
dc.contributor.authorAffiliationSankappanavar, Hanamantagouda P. - State University of New York, Department of Mathematics, New Paltz, New York, 12561, USAen
dc.identifier.eissn2449-836X
dc.referencesM. Abad, J. M. Cornejo, J. P. Diaz Varela, The variety generated by semi-Heyting chains, Soft Computing, vol. 15(4) (2010), pp. 721–728, DOI: https://doi.org/10.1007/s00500-010-0604-0en
dc.referencesM. Abad, J. M. Cornejo, J. P. Díaz Varela, The variety of semi-Heyting algebras satisfying the equation ((0to 1)sp astvee(0to 1)sp {astast}approx 1), Reports on Mathematical Logic, vol. 46 (2011), pp. 75–90.en
dc.referencesM. Abad, J. M. Cornejo, J. P. Diaz Varela, Semi-Heyting Algebras Termequivalent to Gödel Algebras, Order, vol. 30(2) (2013), pp. 625–642, DOI: https://doi.org/10.1007/s11083-012-9266-0en
dc.referencesM. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Regular double palgebras, Mathematica Slovaca, vol. 69(1) (2019), pp. 15–34, DOI: https: //doi.org/10.1515/ms-2017-0200en
dc.referencesM. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Varieties of Regular Pseudocomplemented de Morgan Algebras, Order, vol. 37(3) (2020), pp. 529–557, DOI: https://doi.org/10.1007/s11083-019-09518-yen
dc.referencesW. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77(396) (1989), pp. vi+78.en
dc.referencesS. Burris, H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York (1981).en
dc.referencesJ. M. Cornejo, Semi-intuitionistic logic, Studia Logica, vol. 98(1–2) (2011), pp. 9–25, DOI: https://doi.org/10.1007/s11225-011-9321-7en
dc.referencesJ. M. Cornejo, M. Kinyon, H. P. Sankappanavar, Regular double p-algebras: A converse to a Katriňák’s theorem, and applications (2022), preprint.en
dc.referencesJ. M. Cornejo, L. F. Monteiro, H. P. Sankappanavar, I. D. Viglizzo, A note on chain-based semi-Heyting algebras, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 409–417, DOI: https://doi.org/10.1002/malq.201900070en
dc.referencesJ. M. Cornejo, H. P. Sankappanavar, Semi-Heyting Algebras and Identities of Associative Type, Bulletin of the Section of Logic, vol. 48(2) (2019), pp. 117–135, DOI: https://doi.org/10.18778/0138-0680.48.2.03en
dc.referencesJ. M. Cornejo, H. P. Sankappanavar, Connexive logics arising from semi-Heyting algebras and from dually hemimorphic semi-Heyting algebras (2022), in Preparationen
dc.referencesJ. M. Cornejo, I. Viglizzo, Semi-intuitionistic Logic with Strong Negation, Studia Logica, vol. 106(2) (2017), pp. 281–293, DOI: https://doi.org/10.1007/s11225-017-9737-9en
dc.referencesJ. M. Cornejo, I. D. Viglizzo, On Some Semi-Intuitionistic Logics, Studia Logica, vol. 103(2) (2015), pp. 303–344, DOI: https://doi.org/10.1007/s11225-014-9568-xen
dc.referencesJ. M. Cornejo, I. D. Viglizzo, Semi-Nelson Algebras, Order, vol. 35(1) (2018), pp. 23–45, DOI: https://doi.org/10.1007/s11083-016-9416-xen
dc.referencesJ. Font, Abstract Algebraic Logic. An Introductory Textbook, College Publications, Rickmansworth (2016).en
dc.referencesJ. M. Font, R. Jansana, D. Pigozzi, A Survey of Abstract Algebraic Logic, Studia Logica, vol. 74(1/2) (2003), pp. 13–97, DOI: https://doi.org/10.1023/a:1024621922509en
dc.referencesT. Jarmużek, J. Malinowski, Boolean Connexive Logics: Semantics and tableau approach, Logic and Logical Philosophy, vol. 28 (2019), pp. 427–448, DOI: https://doi.org/10.12775/llp.2019.003en
dc.referencesT. Katriňák, The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis, vol. 3(1) (1973), pp. 238–246, DOI: https://doi.org/10.1007/bf02945123en
dc.referencesG. Moisil, Essais sur les logiques non chrysippiennes, Éditions de l’Académie Socialiste de Roumanie (1972), URL: https://books.google.com.ar/books?id=pjjQAAAAMAAJen
dc.referencesG. C. Moisil, Logique modale. Disquisitiones mathematicae et physicae (Bucharest), vol. 2 (1942), pp. 3–98., Journal of Symbolic Logic, vol. 13(3) (1948), pp. 162–163, DOI: https://doi.org/10.2307/2267855en
dc.referencesA. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://eudml.org/doc/115416 special Issue in honor of António Monteiro.en
dc.referencesH. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam (1974).en
dc.referencesH. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Pacific Journal of Mathematics, vol. 117(2) (1985), pp. 405–415, DOI: https://doi.org/10.2140/pjm.1985.117.405en
dc.referencesH. P. Sankappanavar, Semi-Heyting algebras, Amererican Mathematical Society Abstracts, (1985), p. 13.en
dc.referencesH. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Zeitschrift f für Mathematische Logik und Grundlagen der Mathematik, vol. 33(6) (1987), pp. 565–573, DOI: https://doi.org/10.1002/malq.19870330610en
dc.referencesH. P. Sankappanavar, Semi-De Morgan algebras, The Journal of Symbolic Logic, vol. 52(3) (1987), pp. 712–724, DOI: https://doi.org/10.2307/2274359en
dc.referencesH. P. Sankappanavar, Semi-Heyting algebras: An abstraction from Heyting algebras, Actas del Congreso “Dr. Antonio A. R. Monteiro”, [in:] Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), Univ. Nac. del Sur, Bahı́a Blanca (2008), pp. 33–66.en
dc.referencesH. P. Sankappanavar, Expansions of semi-Heyting algebras I: Discriminator varieties, Studia Logica, vol. 98(1–2) (2011), pp. 27–81, DOI: https://doi.org/10.1007/s11225-011-9322-6en
dc.referencesH. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 47–64, URL: https://cgasa.sbu.ac.ir/article_6483.htmlen
dc.referencesH. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 65–82, URL: https://cgasa.sbu.ac.ir/article_6799.htmlen
dc.referencesH. P. Sankappanavar, A note on regular De Morgan Stone semi-Heyting algebras, Demonstracio Mathematica, vol. 49(3) (2016), pp. 252–265, DOI: https://doi.org/10.1515/dema-2016-0021en
dc.referencesH. P. Sankappanavar, JI-distributive dually quasi-De Morgan semi-Heyting and Heyting algebras, Scientiae Mathematicae Japonicae, vol. 82(3) (2019), pp. 245–271, DOI: https://doi.org/10.32219/isms.82.3 245en
dc.referencesH. P. Sankappanavar, De Morgan semi-Heyting and Heyting algebras, [in:] K. P. Shum, E. Zelmanov, P. Kolesnikov, S. M. Anita Wong (eds.), New Trends in Algebras and Combinatorics. Proceeding of the 3rd International Congress in Algebra and Combinatorics ICAC2017, Hong Kong, China, 25–28 August 2017 (2020), pp. 447–457, DOI: https://doi.org/10.1142/9789811215476_0024en
dc.referencesH. P. Sankappanavar, A few historical glimpses into the interplay between algebra and logic and investigations into Gautama algebras, [in:] S. Sarukkai, M. K. Chakraborty (eds.), Handbook of Logical Thought in India, Springer, New Delhi (2022), pp. 1–75, DOI: https://doi.org/10.1007/978-81-322-2577-5_54en
dc.referencesH. P. Sankappanavar, Gautama and Almost Gautama algebras and their associated logics (2022), preprint.en
dc.referencesJ. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis, vol. 2(1) (1972), pp. 218–223, DOI: https://doi.org/10.1007/bf02945029en
dc.referencesH. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2022 ed., Metaphysics Research Lab, Stanford University (2022).en
dc.contributor.authorEmailCornejo, Juan Manuel - jmcornejo@uns.edu.ar
dc.contributor.authorEmailSankappanavar, Hanamantagouda P. - sankapph@newpaltz.edu
dc.identifier.doi10.18778/0138-0680.2022.23
dc.relation.volume51


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0