Pokaż uproszczony rekord

dc.contributor.authorRezaei, Gholam Reza
dc.contributor.authorBorzooei, Rajab Ali
dc.contributor.authorAaly Kologani, Mona
dc.contributor.authorJun, Young Bae
dc.date.accessioned2023-06-07T09:21:13Z
dc.date.available2023-06-07T09:21:13Z
dc.date.issued2023-01-25
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/47234
dc.description.abstractRough set theory is an excellent mathematical tool for the analysis of a vague description of actions in decision problems. Now, in this paper by considering the notion of an equality algebra, the notion of the lower and the upper approximations are introduced and some properties of them are given. Moreover, it is proved that the lower and the upper approximations define an interior operator and a closure operator, respectively. Also, using D-lower and D-upper approximation, conditions for a nonempty subset to be definable are provided and investigated that under which condition D-lower and D-upper approximation can be filter.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectequality algebraen
dc.subjectapproximation spaceen
dc.subjectD-lower approximationen
dc.subjectD-upper approximationen
dc.subjectfilteren
dc.subjectD-lower filteren
dc.subjectD-upper filteren
dc.titleRoughness of Filters in Equality Algebrasen
dc.typeOther
dc.page.number1-18
dc.contributor.authorAffiliationRezaei, Gholam Reza - University of Sistan and Baluchestan, Department of Mathematics, 98167-45845, Daneshjoo Boulevard Zahedan, Iranen
dc.contributor.authorAffiliationBorzooei, Rajab Ali - Shahid Beheshti University, Faculty of Mathematical Sciences, Department of Mathematics, 1983969411, Daneshjoo Boulevard Tehran, Iranen
dc.contributor.authorAffiliationAaly Kologani, Mona - Shahid Beheshti University, Faculty of Mathematical Sciences, Department of Mathematics, 1983969411, Daneshjoo Boulevard Tehran, Iranen
dc.contributor.authorAffiliationJun, Young Bae - Gyeongsang National University, Department of Mathematics Education, Jinju 52828, Koreaen
dc.identifier.eissn2449-836X
dc.referencesR. Biswas, S. Nanda, Rough groups and rough subgroups, Bulletin of the Polish Academy of Sciences Mathematics, vol. 42(3) (1994), pp. 251–254, DOI: https://doi.org/10.1007/11548669_1en
dc.referencesT. B. Iwiński, Algebraic approach to rough sets, Bulletin of the Polish Academy of Sciences, vol. 35 (1987), pp. 673–683, DOI: https://doi.org/10.1007/11548669_14en
dc.referencesS. Jenei, Equality algebras, Studia Logica, vol. 56(2) (2010), pp. 183–186, DOI: https://doi.org/10.1109/CINTI.2010.5672249en
dc.referencesS. Jenei, Equality algebras, Studing Logics, vol. 100 (2012), pp. 1201–1209.en
dc.referencesS. Jenei, Kóródi, On the variety of equality algebras, Fuzzy Logic and Technology, (2011), pp. 153–155, DOI: https://doi.org/10.2991/eusflat.2011.1en
dc.referencesY. B. Jun, Roughness of ideals in BCK-algebras, Scientiae Mathematicae Japonicae, vol. 7 (2002), pp. 115–119.en
dc.referencesY. B. Jun, K. H. Kim, Rough set theory applied to BCC-algebras, International Mathematical Forum, vol. 2(41-44) (2007), pp. 2023–2029, DOI: https://doi.org/10.12988/imf.2007.07182en
dc.referencesN. Kuroki, Rough ideals in semigroups, Information Sciences, vol. 100 (1997), pp. 139–163, DOI: https://doi.org/10.1016/S0020-0255(96)00274-5en
dc.referencesN. Kuroki, J. N. Mordeson, Structure of rough sets and rough groups, Journal of Fuzzy Mathematics, vol. 5 (1997), pp. 183–191.en
dc.referencesV. Novák, B. D. Baets, EQ-algebras, Fuzzy Sets and Systems, vol. 160(20) (2009), pp. 2956–2978, DOI: https://doi.org/10.1016/j.fss.2009.04.010en
dc.referencesZ. Pawlak, Rough sets, International Journal of Computer and Information Sciences, vol. 11(5) (1982), pp. 341–356, DOI: https://doi.org/10.1007/BF01001956en
dc.referencesS. Rasouli, B. Davvaz, Roughness in MV-algebras, Information Sciences, vol. 180(5) (2010), pp. 737–747, DOI: https://doi.org/10.1016/j.ins.2009.11.008en
dc.referencesF. Zebardast, R. A. Borzooei, M. A. Kologani, Results on equality algebras, Information Sciences, vol. 381 (2017), pp. 270–282, DOI: https://doi.org/10.1016/j.ins.2016.11.027en
dc.contributor.authorEmailRezaei, Gholam Reza - grezaei@math.usb.ac.ir
dc.contributor.authorEmailBorzooei, Rajab Ali - borzooei@sbu.ac.ir
dc.contributor.authorEmailAaly Kologani, Mona - mona4011@gmail.com
dc.contributor.authorEmailJun, Young Bae - skywine@gmail.com
dc.identifier.doi10.18778/0138-0680.2023.01
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0