Show simple item record

dc.contributor.authorDerseh, Beza Lamesgin
dc.contributor.authorAlaba, Berhanu Assaye
dc.contributor.authorWondifraw, Yohannes Gedamu
dc.date.accessioned2023-06-07T09:21:14Z
dc.date.available2023-06-07T09:21:14Z
dc.date.issued2023-04-21
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/47235
dc.description.abstractIn this paper, we introduce the notion of intuitionistic fuzzy PMS-subalgebras under homomorphism and Cartesian product and investigate several properties. We study the homomorphic image and inverse image of the intuitionistic fuzzy PMS-subalgebras of a PMS-algebra, which are also intuitionistic fuzzy PMS-subalgebras of a PMS-algebra, and find some other interesting results. Furthermore, we also prove that the Cartesian product of intuitionistic fuzzy PMS-subalgebras is again an intuitionistic fuzzy PMS-subalgebra and characterize it in terms of its level sets. Finally, we consider the strongest intuitionistic fuzzy PMS-relations on an intuitionistic fuzzy set in a PMS-algebra and demonstrate that an intuitionistic fuzzy PMS-relation on an intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra if and only if the corresponding intuitionistic fuzzy set in a PMS-algebra is an intuitionistic fuzzy PMS-subalgebra of a PMS-algebra.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectPMS-algebraen
dc.subjectintuitionistic fuzzy PMS-subalgebraen
dc.subjecthomomorphismen
dc.subjectcartesian product and strongest intuitionistic fuzzy relationen
dc.titleOn Homomorphism and Cartesian Products of Intuitionistic Fuzzy PMS-subalgebra of a PMS-algebraen
dc.typeOther
dc.page.number19-38
dc.contributor.authorAffiliationDerseh, Beza Lamesgin - Bahir Dar University, College of Science, Department of Mathematics Bahir Dar, Ethiopiaen
dc.contributor.authorAffiliationAlaba, Berhanu Assaye - Bahir Dar University, College of Science, Department of Mathematics, Bahir Dar, Ethiopiaen
dc.contributor.authorAffiliationWondifraw, Yohannes Gedamu - Bahir Dar University, College of Science, Department of Mathematics, Bahir Dar, Ethiopiaen
dc.identifier.eissn2449-836X
dc.referencesN. Anitha, K. Arjunan, Notes on intuitionistic fuzzy ideals of Hemiring, Applied Mathematical Science, vol. 5(68) (2011), pp. 3393–3402, URL: http://www.m-hikari.com/ams/ams-2011/ams-65-68-2011/anithaAMS65-68-2011.pdfen
dc.referencesK. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(1) (1986), pp. 87–96, DOI: https://doi.org/10.1016/S0165-0114(86)80034-3en
dc.referencesK. T. Atanassov, New operations defined over the Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 61(2) (1994), pp. 137–142, DOI: https://doi.org/10.1016/0165-0114(94)90229-1en
dc.referencesB. L. Derseh, B. A. Assaye, Y. G. Wondifraw, Intuitionistic fuzzy PMS-subalgebra of a PMS-algebra, Korean Journal of Mathematics, vol. 29(3) (2021), pp. 563–576, DOI: https://doi.org/10.11568/kjm.2021.29.3.563en
dc.referencesM. Panigrahi, S. Nanda, Intuitionistic Fuzzy Relations over Intuitionistic Fuzzy Sets, Journal of Fuzzy Mathematics, vol. 15(3) (2007), pp. 675–688en
dc.referencesJ. Peng, Intuitionistic Fuzzy B-algebras, Research Journal of Applied Sciences, Engineering and Technology, vol. 4(21) (2012), pp. 4200–4205, URL: https://maxwellsci.com/print/rjaset/v4-4200-4205.pdfen
dc.referencesP. M. S. Selvam, K. T. Nagalakshmi, Fuzzy PMS-ideals in PMS-algebras, Annals of Pure and Applied Mathematics, vol. 12(2) (2016), pp. 153–159, DOI: https://doi.org/10.22457/apam.v12n2a6en
dc.referencesP. M. S. Selvam, K. T. Nagalakshmi, On PMS-algebras, Transylvanian Review, vol. 24(10) (2016), pp. 31–38.en
dc.referencesP. M. S. Selvam, K. T. Nagalakshmi, Role of homomorphism and Cartesian product over Fuzzy PMS-algebra, International Journal of Fuzzy Mathematical Archive, vol. 11(1) (2016), pp. 1622–1628, DOI: https://doi.org/10.22457/ijfma.v11n1a5en
dc.referencesP. K. Sharma, Homomorphism of intuitionistic fuzzy groups, International Mathematical Forum, vol. 6(64) (2011), pp. 3169–3178, URL: http://www.m-hikari.com/imf-2011/61-64-2011/sharmapkIMF61-64-2011.pdfen
dc.referencesP. K. Sharma, On the direct product of Intuitionistic fuzzy groups, International Mathematical Forum, vol. 7(11) (2012), pp. 523–530, DOI: https://doi.org/http://www.m-hikari.com/imf/imf-2012/9-12-2012/sharmapkIMF9-12-2012.pdfen
dc.referencesL. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (1965), pp. 338–353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-Xen
dc.contributor.authorEmailDerseh, Beza Lamesgin - dbezalem@gmail.com
dc.contributor.authorEmailAlaba, Berhanu Assaye - birhanu.assaye290113@gmail.com
dc.contributor.authorEmailWondifraw, Yohannes Gedamu - yohannesg27@gmail.com
dc.identifier.doi10.18778/0138-0680.2023.08
dc.relation.volume52


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0