Pokaż uproszczony rekord

dc.contributor.authorGyenis, Zalán
dc.contributor.authorMolnár, Zalán
dc.contributor.authorÖztürk, Övge
dc.date.accessioned2023-06-07T09:21:16Z
dc.date.available2023-06-07T09:21:16Z
dc.date.issued2023-04-21
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/47237
dc.description.abstractIn this paper we introduce the modelwise interpolation property of a logic that states that whenever \(\models\phi\to\psi\) holds for two formulas \(\phi\) and \(\psi\), then for every model \(\mathfrak{M}\) there is an interpolant formula \(\chi\) formulated in the intersection of the vocabularies of \(\phi\) and \(\psi\), such that \(\mathfrak{M}\models\phi\to\chi\) and \(\mathfrak{M}\models\chi\to\psi\), that is, the interpolant formula in Craig interpolation may vary from model to model. We compare the modelwise interpolation property with the standard Craig interpolation and with the local interpolation property by discussing examples, most notably the finite variable fragments of first order logic, and difference logic. As an application we connect the modelwise interpolation property with the local Beth definability, and we prove that the modelwise interpolation property of an algebraizable logic can be characterized by a weak form of the superamalgamation property of the class of algebras corresponding to the models of the logic.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinterpolationen
dc.subjectalgebraic logicen
dc.subjectamalgamationen
dc.subjectsuperamalgamationen
dc.titleThe Modelwise Interpolation Property of Semantic Logicsen
dc.typeOther
dc.page.number59-83
dc.contributor.authorAffiliationGyenis, Zalán - Jagiellonian University, Institute of Philosophy, ul. Grodzka 52, 31-044 Krak´ow, Polanden
dc.contributor.authorAffiliationMolnár, Zalán - Eötvös Loránd University, Department of Logic, Múzeum krt. 4., 1088 Budapest, Hungaryen
dc.contributor.authorAffiliationÖztürk, Övge - Eötvös Loránd University, Department of Logic, Múzeum krt. 4., 1088 Budapest, Hungaryen
dc.identifier.eissn2449-836X
dc.referencesH. Andréka, Z. Gyenis, I. Németi, I. Sain, Universal Algebraic Logic, Birkhauser (2022), DOI: https://doi.org/10.1007/978-3-031-14887-3en
dc.referencesH. Andréka, J. X. Madarász, I. Németi, Logic of Space-Time and Relativity Theory, [in:] M. Aiello, I. Pratt-Hartmann, J. Van Benthem (eds.), Handbook of Spatial Logics, Springer Netherlands, Dordrecht (2007), pp. 607–711, DOI: https://doi.org/10.1007/978-1-4020-5587-4_11en
dc.referencesH. Andréka, I. Németi, I. Sain, Algebraic logic, [in:] Handbook of Philosophical Logic, vol. 2, Kluwer Academic Publishers, Dordrecht (2001), pp. 133–247.en
dc.referencesH. Andréka, I. Németi, J. van Benthem, Interpolation and Definability Properties of Finite Variable Fragments, Reports of the Mathematical Institute, Hungarian Academy of Sciences, (1993).en
dc.referencesH. Andréka, I. Németi, J. van Benthem, Modal languages and bounded fragments of predicate logic, Journal of Philosophical Logic, vol. 27(3) (1998), pp. 217–274, DOI: https://doi.org/10.1023/A:1004275029985en
dc.referencesJ. Barwise, On Moschovakis closure ordinals, Journal of Symbolic Logic, vol. 42(2) (1977), p. 292–296, DOI: https://doi.org/10.2307/2272133en
dc.referencesP. Blackburn, M. d. Rijke, Y. Venema, Modal Logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press (2001), DOI: https://doi.org/10.1017/CBO9781107050884en
dc.referencesW. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77(396) (1989), pp. vi+78, DOI: https://doi.org/10.1090/memo/0396en
dc.referencesW. J. Blok, D. Pigozzi, Abstract Algebraic Logic, Lecture Notes of the Summer School “Algebraic Logic and the Methodology of Applying it”, Budapest, (1994).en
dc.referencesW. J. Blok, D. L. Pigozzi, Local deduction theorems in algebraic logic, [in:] Algebraic logic (Budapest, 1988), vol. 54 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam (1991), pp. 75–109.en
dc.referencesW. Conradie, Definability and changing perspectives, Master’s thesis, University of Amsterdam (2002).en
dc.referencesJ. Czelakowski, Logical matrices and the amalgamation property, Studia Logica, vol. 41(4) (1982), pp. 329–341 (1983), DOI: https://doi.org/10.1007/BF00403332en
dc.referencesJ. Czelakowski, D. Pigozzi, Amalgamation and interpolation in abstract algebraic logic, [in:] Models, algebras, and proofs (Bogotá, 1995), vol. 203 of Lecture Notes in Pure and Applied Mathematics, Dekker, New York (1999), pp. 187–265, DOI: https://doi.org/10.1201/9780429332890en
dc.referencesJ. Czelakowski, D. Pigozzi, Fregean logics, Annals of Pure and Applied Logic, vol. 127(1-3) (2004), pp. 17–76, DOI: https://doi.org/10.1016/j.apal.2003.11.008en
dc.referencesZ. Gyenis, Interpolation property and homogeneous structures, Logic Journal of the IGPL, vol. 22(4) (2014), pp. 597–607, DOI: https://doi.org/10.1093/jigpal/jzt051en
dc.referencesZ. Gyenis, Algebraic characterization of the local Craig interpolation property, Bulletin of the Section of Logic, vol. 47(1) (2018), pp. 45–58, DOI: https://doi.org/10.18778/0138-0680.47.1.04en
dc.referencesE. Hoogland, Algebraic characterizations of two Beth definability properties, Master’s thesis, Universiteit van Amsterdam (1996).en
dc.referencesE. Hoogland, Definability and Interpolation, model-theoretic investigations, Ph.D. thesis, Institute for Logic, Language and Computation, Universiteit van Amsterdam (2001).en
dc.referencesP. Krzystek, S. Zachorowski, Lukasiewicz logics have not the interpolation property, Reports on Mathematical Logic, vol. 9 (1977), pp. 39–40.en
dc.referencesJ. X. Madarász, Interpolation and amalgamation; pushing the limits. I, Studia Logica, vol. 61(3) (1998), pp. 311–345, DOI: https://doi.org/10.1023/A:1005064504044en
dc.referencesJ. X. Madarász, I. Németi, G. Székely, First-Order Logic Foundation of Relativity Theories, [in:] D. M. Gabbay, M. Zakharyaschev, S. S. Goncharov (eds.), Mathematical Problems from Applied Logic II: Logics for the XXIst Century, Springer New York, New York, NY (2007), pp. 217–252, DOI: https://doi.org/10.1007/978-0-387-69245-6_4en
dc.referencesL. Maksimova, Amalgamation and interpolation in normal modal logic, Studia Logica, vol. 50(3-4) (1991), pp. 457–471, DOI: https://doi.org/10.1007/BF00370682 algebraic logic.en
dc.referencesL. L. Maksimova, Interpolation theorems in modal logics and amalgamable varieties of topological Boolean algebras, Algebra i Logika, vol. 18(5) (1979), pp. 556–586, 632.en
dc.referencesP. Mancosu, Introduction: Interpolations—essays in honor of William Craig, Synthese, vol. 164(3) (2008), pp. 313–319, DOI: https://doi.org/10.1007/s11229-008-9350-6en
dc.referencesG. Metcalfe, F. Montagna, C. Tsinakis, Amalgamation and interpolation in ordered algebras, Journal of Algebra, vol. 402 (2014), pp. 21–82, DOI: https://doi.org/10.1016/j.jalgebra.2013.11.019en
dc.referencesD. Mundici, Consequence and Interpolation in Lukasiewicz Logic, Studia Logica, vol. 99(1/3) (2011), pp. 269–278, URL: http://www.jstor.org/stable/41475204en
dc.referencesD. Nyiri, The Robinson property and amalgamations of higher arities, Mathematical Logic Quarterly, vol. 62(4–5) (2016), pp. 427–433, DOI: https://doi.org/10.1002/malq.201500027en
dc.referencesD. Pigozzi, Amalgamation, congruence-extension, and interpolation properties in algebras, Algebra Universalis, vol. 1 (1971/72), pp. 269–349, DOI: https://doi.org/10.1007/BF02944991en
dc.referencesD. J. Pigozzi, Fregean algebraic logic, [in:] Algebraic logic (Budapest, 1988), vol. 54 of Colloquia Mathematica Societatis János Bolyai, North-Holland, Amsterdam (1991), pp. 473–502.en
dc.referencesG. Priest, An Introduction to Non-Classical Logic: From If to Is, Cambridge University Press (2008).en
dc.referencesD. Roorda, Resource Logics. Proof-Theoretical Investigations, Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (1991).en
dc.referencesG. Sági, S. Shelah, On weak and strong interpolation in algebraic logics, The Journal of Symbolic Logic, vol. 71(1) (2006), pp. 104–118, DOI: https://doi.org/10.2178/jsl/1140641164en
dc.referencesI. Sain, Successor axioms for time increase the program verifying power of full computational induction, Mathematical Institute if the Hungarian Academy of Sciences, vol. 23 (1983).en
dc.referencesI. Sain, Is “some-other-time” sometimes better than “sometime” for proving partial correctness of programs?, Studia Logica, vol. 47(3) (1988), pp. 279–301, DOI: https://doi.org/10.1007/BF00370557en
dc.referencesI. Sain, Beth’s and Craig’s properties via epimorphisms and amalgamation in algebraic logic, [in:] Algebraic Logic and Universal Algebra in Computer Science (Ames, IA, 1988), vol. 425 of Lecture Notes in Computer Science, Springer, Berlin (1990), pp. 209–225, DOI: https://doi.org/10.1007/BFb0043086en
dc.referencesK. Segerberg, “Somewhere else” and “Some other time”, [in:] Wright and Wrong — Mini essays in honor of Georg Henrik von Wright, vol. 3 of Publications, Group in Logic and Methodology of Real Finland (1976), pp. 61–64.en
dc.referencesS. J. van Gool, G. Metcalfe, C. Tsinakis, Uniform interpolation and compact congruences, Annals of Pure and Applied Logic, vol. 168(10) (2017), pp. 1927–1948, DOI: https://doi.org/10.1016/j.apal.2017.05.001en
dc.referencesY. Venema, Many-dimensional Modal Logic, Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (1992).en
dc.contributor.authorEmailGyenis, Zalán - zalan.gyenis@gmail.com
dc.contributor.authorEmailMolnár, Zalán - mozaag@gmail.com
dc.contributor.authorEmailÖztürk, Övge - ovgeovge@gmail.com
dc.identifier.doi10.18778/0138-0680.2023.09
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0