dc.contributor.author | Nowaczewska, Wioletta | |
dc.contributor.author | Górka, Katarzyna | |
dc.contributor.author | Cieślik, Agata | |
dc.contributor.author | Patyk, Mateusz | |
dc.contributor.author | Zaleska-Dorobisz, Urszula | |
dc.date.accessioned | 2023-10-24T11:23:56Z | |
dc.date.available | 2023-10-24T11:23:56Z | |
dc.date.issued | 2023-09-26 | |
dc.identifier.issn | 1898-6773 | |
dc.identifier.uri | http://hdl.handle.net/11089/48153 | |
dc.description.abstract | The knowledge about the pattern of the relationship between the morphological variability of the supraorbital region of human skulls and the features of the temporal muscle is far from complete. The main aim of this study was to determine the relationships between the traits of human temporal muscle (i.e., its relative height and length) and the relative massiveness of the supraorbital region of the frontal bone with taking into account the potential influence of the neurocranial shape and the relative area of the occlusal surface of the upper molars.Skulls of African and Australian males (n = 44) exhibiting high variability in the massiveness of the supraorbital region, the presence of two types of the upper molars (first and second, n = 88) and a good state of the preservation of the braincase with the clearly visible inferior temporal line were examined.The qualitative scales were used to assess the degrees of the massiveness of the supraorbital regions. Metric traits of temporal muscle and that used to calculate the index of the neurocranial shape, size of the braincase and the facial skeleton were collected. Values of the occlusal areas of the molars were obtained using the ImageJ software.Spearman’s rank correlation and partial rank correlation analyses were performed.The results of our study showed the relationships between the traits of the temporal muscle and only the degree of the robusticity of most lateral part of the supraorbital area (trigonum). However, when the influences of the neurocranial shape and the relative occlusal area of molars were excluded, these relationships disappeared. The greatest importance of the neurocranial shape for the formation of the morphology of the trigonum was indicated. The results of the study were discussed from the perspective of the potential role of the temporal muscle as the part of the mastication apparatus for the development of the robusticity of the cranial supraorbital region. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Anthropological Review;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | cranial robusticity | en |
dc.subject | masticatory stress | en |
dc.subject | masticatory muscles | en |
dc.subject | human skulls | en |
dc.subject | cranial shape | en |
dc.title | The assessment of the relationship between the traits of temporal muscle and the massiveness of the supraorbital region of the Homo sapiens crania including the influence of the neurocranial shape and size of the occlusal surface of the upper molars – preliminary study | en |
dc.type | Article | |
dc.page.number | 67-86 | |
dc.contributor.authorAffiliation | Nowaczewska, Wioletta - Department of Human Biology, University of Wrocław, Poland | en |
dc.contributor.authorAffiliation | Górka, Katarzyna - Department of Anthropology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Poland | en |
dc.contributor.authorAffiliation | Cieślik, Agata - Department of Anthropology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Poland | en |
dc.contributor.authorAffiliation | Patyk, Mateusz - Department of General and Pediatric Radiology, Medical University of Wrocław, Poland | en |
dc.contributor.authorAffiliation | Zaleska-Dorobisz, Urszula - Department of General and Pediatric Radiology, Medical University of Wrocław, Poland | en |
dc.identifier.eissn | 2083-4594 | |
dc.references | Abràmoff MD, Magalhães PJ, Ram SJ. 2004. Image processing with Image J. Biophotonics Int 11:36–42. | en |
dc.references | Baab KL, Freidline SE, Wang SL, Hanson T. 2010. Relationship of cranial robusticity to cranial form, geography and climate in Homo sapiens. Am J Phys Anthropol 141: 97–115. https://doi.org/10.1002/ajpa.21120 | en |
dc.references | Bastir M, Rosas A. 2005. Hierarchical nature of morphological integration and modularity in the human posterior face. Am J Phys Anthropol 128(1):26–34. https://doi.org/10.1002/ajpa.20191 | en |
dc.references | Beecher RM, Corruccini RS. 1981. Effects of dietary consistency on maxillary arch breadth in macaques. J Dent Res 60(1):68 https://doi.org/10.1177/00220345810600011301 | en |
dc.references | Bräuer G. 1988. Osteometrie. In: R. Knussmann, editor. Anthropologie (160–232). Germany, Stuttgart: G. Fischer. 160–232. | en |
dc.references | Bresin A, Johansson CB, Kiliaridis S. 1994. Effects of occlusal strain on the development of the dentoalveolar process in the growing rat. A morphometric study. Eur J Musculoskel Res 3: 112–22. | en |
dc.references | Buikstra JE, Ubelaker DH. 1994. Standards for data collection from human skeletal remains. Arkansas Archeological Survey Research Series, No 44. NC, USA: Fayetteville. | en |
dc.references | Carlson DS, Van Gerven DP. 1977. Masticatory function and post-Pleistocene evolution in Nubia. Am J Phys Anthropol 46(3):495–506. | en |
dc.references | Cunningham DJ. 1908. The evolution of the eyebrow region of the forehead, with special reference to the excessive supraorbital development in the Neanderthal race. Earth Environ Sci Trans R Soc Edinb 46(2):283–311. | en |
dc.references | Demes B, Creel N. 1988. Bite force, diet and cranial morphology of fossil hominids. J Hum Evol 17(7):657–70. | en |
dc.references | Dempsey P, Townsend G. 2001. Genetic and environmental contributions to variation in human tooth size. Heredity 86(6):685–93. https://doi.org/10.1046/j.1365-2540.2001.00878.x | en |
dc.references | Endo B. 1970. Analysis of stress around the orbit due to masseter and temporalis muscles respectively. J Anthropol Soc Jpn 78(4):251–66. | en |
dc.references | Ferembach D, Schwindezky I, Stoukal M. 1980. Recommendations for age and sex diagnoses of skeletons. J Hum Evol 9(7):517–49. | en |
dc.references | Garvin HM, Ruff CB. 2012. Sexual dimorphism in skeletal browridge and chin morphologies determined using a new quantitative method. Am J Phys Anthropol 147(4):661–70. https://doi.org/10.1002/ajpa.22036 | en |
dc.references | Gonzalez PN, Perez SI, Bernal V. 2010. Ontogeny of robusticity of craniofacial traits in modern humans: a study of South American Populations. Am J Phys Anthropol 142(3):367–79. https://doi.org/10.1002/ajpa.21231 | en |
dc.references | Górka K, Romero A, Pérez-Péreza A. 2015. First molar size and wear within and among modern hunter-gatherers and agricultural populations. Homo 66(4):299–315. https://doi.org/10.1016/j.jchb.2015.02.007 | en |
dc.references | Górka K, Romero A, Pérez-Péreza A. 2016. Dental-macrowear and diet of Tigara foragers from Point Hope, Northern Alaska. Anthropol Anz 73(3):257–64. https://doi.org/10.1127/anthranz/2016/0613 | en |
dc.references | Górny S. 1957. Crania Africana, Uganda. Mater Prace Antropolog 14:1–400. | en |
dc.references | Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9. | en |
dc.references | Harvati K, Weaver TD. 2006. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat Rec 288(12):1225–33. https://doi.org/10.1002/ar.a.20395 | en |
dc.references | Hassan MG, Kaler H, Zhang B, Cox TC, Young N, Jheon AH. 2020. Effects of multi-generational soft diet consumption on mouse craniofacial morphology. Front Physiol 11:783. https://doi.org/10.3389/fphys.2020.00783 | en |
dc.references | Hillson S. 1996. Dental Anthropology. Cambridge University Press: Cambridge. | en |
dc.references | Hylander WL. 1977. The adaptive significance of Eskimo craniofacial morphology. In: A. Dahlberg, TM. Graber, editors. Orofacial growth and development. Mouton Publishers, The Hague, Paris: 129–169. | en |
dc.references | Hylander W, Picq P, Johnson K. 1991. Masticatory-stress hypotheses and the supraorbital region of primates. Am J Phys Anthropol 86(1):1–36. | en |
dc.references | Kamegai T, Tatsuki T, Nagano H, Mitsuhashi H, Kumeta J, Tatsuki Y, Kumeta J, Inaba D. 2005. A determination of bite force in northern Japanese children. Eur J Orthod 27(1):53–57. https://doi.org/10.1093/ejo/cjh090 | en |
dc.references | Katz DC, Grote MN, Weaver TD. 2017. Changes in human skull morphology across the agricultural transition are consistent with softer diets in preindustrial farming groups. Proc Natl Acad Sci USA 114(34): 9050–55. https://doi.org/10.1073/pnas.1702586114 | en |
dc.references | Lahr MM. 1996. The Evolution of Modern Human Diversity:A Study in Cranial Variation. Cambridge University Press: Cambridge. | en |
dc.references | Lahr MM, Wright RVS. 1996. The question of robusticity and the relationship between cranial size and shape in Homo sapiens. J Hum Evol 31(2):157–91. | en |
dc.references | Larsen CS. 1995. Biological changes in human populations with agriculture. Annu Rev Anthropol 24:185–213. | en |
dc.references | Lieberman DE. 2011. The Evolution of the Human Head. Harvard University Press: Cambridge. | en |
dc.references | Lieberman DE, Krovitz GE, Yates FW, Devlin M, St Claire M. 2004. Effects of food processing on masticatory strain and craniofacial growth in a retrognathic face. J Hum Evol 46(6):655–677. https://doi.org/10.1016/j.jhevol.2004.03.005 | en |
dc.references | Lieberman DE, McBratney BM, Krovitz G. 2002. The evolution and development of cranial form in Homo sapiens. Proc Natl Acad Sci USA 99(3):1134–39. https://doi.org/10.1073/pnas.022440799 | en |
dc.references | Maskos A, Schmidbauer ML, Kunst S, Rehms R, Putz T, Romer S, et al. 2022. Diagnostic utility of temporal muscle thickness as a monitoring tool for muscle wasting in neurocritical care. Nutrients 14(21), 4498. https://doi.org/10.3390/nu14214498 | en |
dc.references | Matsumura H, Tanijiri T, Kouchi M, Hanihara T, Friess M, Moiseyev V, Stringer Ch, Miyahara K. 2022. Global patterns of the cranial form of modern human populations described by analysis of a 3D surface homologous model. Sci Rep 12:13826. https://doi.org/10.1038/s41598-022-15883-3 | en |
dc.references | Maughan RJ, Watson JS, Weir J. 1983. Strength and cross sectional area of human skeletal muscle. J Physiol (London) 338:37–49. | en |
dc.references | Merema BBJ, Sieswerda JJ, Spijkervet FKL, Kraeima J, Witjes MJH. 2022. A contemporary approach to non-invasive 3D determination of individual masticatory muscle forces: a proof of concept. J Pers Med 12(8), 1273. https://doi.org/10.3390/jpm12081273 | en |
dc.references | Milicerowa H. 1995. Crania Australica. Mater Prace Antropolog 6:1–268. | en |
dc.references | Mitteroecker P, Gunz P, Neubauer S, Muller G. 2012. How to explore morphological integration in human evolution and development? Evol Biol 39:536–53. https://doi.org/10.1007/s11692-012-9178-3 | en |
dc.references | Moltoni G, D’ Arco F, Ross-Espagnet MC, James G, Hayward R. 2021. Observations on the growth of temporalis muscle: a 3D CT imaging study. J Anat 238:1218–1224. https://doi.org/10.1111/joa.13370 | en |
dc.references | Noback ML, Harvati K. 2015. The contribution of subsistence to global human cranial variation. J Hum Evol 80:34–50. https://doi.org/10.1016/j.jhevol.2014.11.005 | en |
dc.references | Nowaczewska W, Górka K, Cieślik A. 2023. Assessment of the relationship between the total occlusal area of the human permanent upper first and second molars and the robusticity of the facial skeleton in sex-different cranial samples of Homo sapiens: a preliminary study. Biology 12(4):566. https://doi.org/10.3390/biology12040566 | en |
dc.references | Nowaczewska W, Kubicka AM, Piontek J, Biecek P. 2022. The meaning of the shape of the frontal bone, facial retraction and prognathism for the degree of gracilisation of the supraorbital region in Homo sapiens. Anthropol Anz 79(3):341–60. https://doi.org/10.1127/anthranz/2022/1497 | en |
dc.references | Nowaczewska W, Kuźmiński Ł, Biecek P. 2015. Morphological relationship between the cranial and supraorbital regions in Homo sapiens. Am J Phys Anthropol 156(1):110–24. https://doi.org/10.1002/ajpa.22632 | en |
dc.references | Paschetta C. de Azevedo S, Castillo L, Martínez-Abadías N, Hernández M, Lieberman DE, González-Joséet R. 2010. The influence of masticatory loading on craniofacial morphology: a test case across technological transitions in the Ohio valley. Am J Phys Anthropol 141(2):297–314. https://doi.org/10.1002/ajpa.21151 | en |
dc.references | Pearson AM. 1990. Muscle growth and exercise. Crit Rev Food Sci Nutr 29(3):167–96. https://doi.org/10.1080/10408399009527522 | en |
dc.references | Perez SI, Lema V, Diniz-Filho JAF, Bernal V, Gonzalez PN, Gobbo D, Pucciarelli HM. 2011. The role of diet and temperature in shaping cranial diversification of South American human populations: an approach based on spatial regression and divergence rate tests. J Biogeogr 38:148–63. https://doi.org/10.1111/j.1365-2699.2010.02392.x | en |
dc.references | Perez SI, Monteiro LR. 2009. Nonrandom factors in modern human morphological diversification: a study of craniofacial variation in southern South American populations. Evol 63(4):978–93. https://doi.org/10.1111/j.1558-5646.2008.00539.x | en |
dc.references | Ravosa MJ, Ning J, Costley DB, Daniel A, Stock SR, Stack MS. 2010. Masticatory biomechanics and masseter fiber-type plasticity. J Musculoskeletal Neuronal Interact 10(1):46–55. | en |
dc.references | Rosas A, Bastir M. 2002. Thin-plate spline analysis of allometry and sexual dimorphism in the human craniofacial complex. Am J Phys Anthropol 117(3):236– 45. https://doi.org/10.1002/ajpa.10023 | en |
dc.references | Roseman CC. 2004. Detecting interregionally diversifying natural selection on modern human cranial form using matched molecular and morphometric data. Proc Natl Acad Sci USA 101(35):12824–29. https://doi.org/10.1073/pnas.0402637101 | en |
dc.references | Rowe RWD, Goldspink G. 1969. Muscle fibre growth in five different muscles in both sexes of mice. I. Normal mice. J Anat 104:519–30. | en |
dc.references | Russell M.D. 1985. The supraorbital torus: a most remarkable peculiarity. Curr Anthropol 26(3):337–50. | en |
dc.references | Sardi ML, Novellino PS, Pucciarelli HM. 2006. Craniofacial morphology in the Argentine Center-West: consequences of the transition to food production. Am J Phys Anthropol 130(3):333–43. https://doi.org/10.1002/ajpa.20379 | en |
dc.references | Singh N, Harvati K, Hublin J-J, Klingenberg ChP. 2012. Morphological evolution through integration: a quantitative study of cranial integration in Homo, Pan, Gorilla and Pongo. J Hum Evol 62(1):155–64. https://doi.org/10.1016/j.jhevol.2011.11.006 | en |
dc.references | Smith HF, Terhune CE, Lockwood CA. 2007. Genetic, geographic, and environmental correlates of human temporal bone variation. Am J Phys Anthropol 134(3):312–22. https://doi.org/10.1002/ajpa.20671 | en |
dc.references | Tolhurst DE, Carstens MH, Greco RJ, Hurwitz DJ. 1991. The surgical anatomy of the scalp. Plast Reconstr Surg 87:603–12. | en |
dc.references | Toro-Ibacachea V, Muñozd VZ, O’Higgins P. 2016. The relationship between skull morphology, masticatory muscle force and cranial skeletal deformation during biting. Ann Anat 203:59–68. https://doi.org/10.1016/j.aanat.2015.03.002 | en |
dc.references | Townsend G, Bockmann M, Hughes T, Brook A. 2012. Genetic, environmental and epigenetic influences on variation in human tooth number, size and shape. Odontology 100(1):1–9. https://doi.org/10.1007/s10266-011-0052-z | en |
dc.references | Von Cramon-Taubadel N. 2011. The relative efficacy of functional and developmental cranial modules for reconstructing global human population history. Am J Phys Anthropol 146(1):83–93. https://doi.org/10.1002/ajpa.21550 | en |
dc.references | Von Cramon-Taubadel N. 2014. Evolutionary insights into global patterns of human cranial diversity: population history, climatic and dietary effects. J Anthropol Sci 92:43–77. https://doi.org/10.4436/jass.91010 | en |
dc.references | Viðarsdóttir US, Cobb S. 2004. Inter- and intra-specific variation in the ontogeny of the hominoid facial skeleton: testing assumptions of ontogenetic variability. Ann Anat 186(5–6):423–28. https://doi.org/10.1016/S0940-9602(04)80076-1 | en |
dc.references | Viðarsdóttir US, O’Higgins P, Stringer C. 2002. A geometric morphometric study of regional differences in the ontogeny of the modern human facial skeleton. J Anat 201(3):211–29. https://doi.org/10.1046/j.1469-7580.2002.00092.x | en |
dc.references | Watt DG, Williams CHM. 1951. The effects of the physical consistency of food on the growth and development of the mandible and the maxilla of the rat. Am J Orthod 37:895–928. | en |
dc.references | Weijs WA, Hillen B. 1984. Relationships between masticatory muscle cross-section and skull shape. J Dent Res 63:1154–57. | en |
dc.references | White TD, Folkens PA. 2000. Human Osteology. Academic Press: San Diego. | en |
dc.contributor.authorEmail | Nowaczewska, Wioletta - wioletta.nowaczewska@uwr.edu.pl | |
dc.contributor.authorEmail | Górka, Katarzyna - katarzyna.gorka@hirszfeld.pl | |
dc.contributor.authorEmail | Cieślik, Agata - agata.cieslik@hirszfeld.pl | |
dc.contributor.authorEmail | Patyk, Mateusz - mateusz.patyk@umw.edu.pl | |
dc.contributor.authorEmail | Zaleska-Dorobisz, Urszula - urszula.zaleska-dorobisz@umw.edu.pl | |
dc.identifier.doi | 10.18778/1898-6773.86.3.05 | |
dc.relation.volume | 86 | |