Show simple item record

dc.contributor.authorPiazza, Mario
dc.contributor.authorPulcini, Gabriele
dc.contributor.authorTesi, Matteo
dc.date.accessioned2023-10-26T14:25:16Z
dc.date.available2023-10-26T14:25:16Z
dc.date.issued2023-08-16
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/48183
dc.description.abstractIn a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic \(\mathbf{K}\), whose values lie in the closed interval \([0,1]\) of rational numbers [14]. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of \(\mathbf{K}\). Specifically, we introduce well-behaved hypersequent calculi for the deontic logic \(\mathbf{D}\) and the non-normal modal logics \(\mathbf{E}\) and \(\mathbf{M}\) and thoroughly investigate their structural properties.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectmodal logicen
dc.subjectgeneral proof theory (including proof-theoretic semantics)en
dc.subjectmany-valued logicsen
dc.titleFractional-Valued Modal Logic and Soft Bilateralismen
dc.typeOther
dc.page.number275-299
dc.contributor.authorAffiliationPiazza, Mario - Scuola Normale Superiore, Classe di Lettere e Filosofiaen
dc.contributor.authorAffiliationPulcini, Gabriele - University of Rome “Tor Vergata”, Department of Literary, Philosophical and Art History Studiesen
dc.contributor.authorAffiliationTesi, Matteo - Scuola Normale Superiore, Classe di Lettere e Filosofiaen
dc.identifier.eissn2449-836X
dc.referencesA. Avron, A constructive analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951, DOI: https://doi.org/10.2307/2273828en
dc.referencesA. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3–4) (1991), pp. 225–248, DOI: https://doi.org/10.1007/BF01531058en
dc.referencesA. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] Logic: From foundations to applications, Clarendon Press (1996), pp. 1–32.en
dc.referencesN. Francez, Bilateralism in proof-theoretic semantics, Journal of Philosophical Logic, vol. 43(2–3) (2014), pp. 239–259, DOI: https://doi.org/10.1007/s10992-012-9261-3en
dc.referencesN. Francez, Proof-theoretic Semantics, College Publications (2015).en
dc.referencesV. Goranko, G. Pulcini, T. Skura, Refutation systems: An overview and some applications to philosophical logics, [in:] F. Liu, H. Ono, J. Yu (eds.), Knowledge, Proof and Dynamics, Springer (2020), pp. 173–197, DOI: https://doi.org/10.1007/978-981-15-2221-5_9en
dc.referencesN. Kürbis, Proof-theoretic semantics, a problem with negation and prospects for modality, Journal of Philosophical Logic, vol. 44(6) (2015), pp. 713–727, DOI: https://doi.org/10.1007/s10992-013-9310-6en
dc.referencesN. Kürbis, Some comments on Ian Rumfitt’s bilateralism, Journal of Philosophical Logic, vol. 45(6) (2016), pp. 623–644, DOI: https://doi.org/10.1007/s10992-016-9395-9en
dc.referencesN. Kürbis, Bilateralist detours: From intuitionist to classical logic and back, [in:] Logique et Analyse, vol. 239 (2017), pp. 301–316, DOI: https://doi.org/10.2143/LEA.239.0.32371556en
dc.referencesG. Mints, Lewis’ systems and system T (1965–1973), [in:] Selected papers in proof theory, Bibliopolis (1992), pp. 221–294.en
dc.referencesG. Mints, A Short Introduction to Modal Logic, Center for the Study of Language (CSLI) (1992).en
dc.referencesM. Piazza, G. Pulcini, Fractional semantics for classical logic, The Review of Symbolic Logic, vol. 13(4) (2020), pp. 810–828, DOI: https://doi.org/10.1017/S1755020319000431en
dc.referencesM. Piazza, G. Pulcini, M. Tesi, Linear logic in a refutational setting, unpublished manuscript.en
dc.referencesM. Piazza, G. Pulcini, M. Tesi, Fractional-valued modal logic, The Review of Symbolic Logic, (2021), p. 1–20, DOI: https://doi.org/10.1017/S1755020321000411en
dc.referencesT. Piecha, P. Schroeder-Heister, Advances in Proof-Theoretic Semantics, Springer (2016).en
dc.referencesG. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900, DOI: https://doi.org/10.2307/2273495en
dc.referencesG. Pulcini, A. Varzi, Classical logic through rejection and refutation, [in:] M. Fitting (ed.), Landscapes in logic (Vol. 2), College Publications (1992).en
dc.referencesG. Pulcini, A. C. Varzi, Complementary Proof Nets for Classical Logic (2023), DOI: https://doi.org/10.1007/s11787-023-00337-9en
dc.referencesI. Rumfitt, ‘Yes’ and ‘No’, Mind, vol. 109(436) (2000), pp. 781–823, DOI: https://doi.org/10.1093/mind/109.436.781en
dc.referencesT. Skura, Refutation systems in propositional logic, [in:] Handbook of Philosophical Logic: Volume 16, Springer (2010), pp. 115–157, DOI: https://doi.org/10.1007/978-94-007-0479-4_2en
dc.referencesH. Wansing, The idea of a proof-theoretic semantics and the meaning of the logical operations, Studia Logica, vol. 64(1) (2000), pp. 3–20, DOI: https://doi.org/10.1023/A:1005217827758en
dc.referencesH. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46, DOI: https://doi.org/10.1016/j.jal.2017.01.002en
dc.contributor.authorEmailPiazza, Mario - mario.piazza@sns.it
dc.contributor.authorEmailPulcini, Gabriele - gabriele.pulcini@uniroma2.it
dc.contributor.authorEmailTesi, Matteo - matteo.tesi@sns.it
dc.identifier.doi10.18778/0138-0680.2023.17
dc.relation.volume52


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/