dc.contributor.author | Piazza, Mario | |
dc.contributor.author | Pulcini, Gabriele | |
dc.contributor.author | Tesi, Matteo | |
dc.date.accessioned | 2023-10-26T14:25:16Z | |
dc.date.available | 2023-10-26T14:25:16Z | |
dc.date.issued | 2023-08-16 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/48183 | |
dc.description.abstract | In a recent paper, under the auspices of an unorthodox variety of bilateralism, we introduced a new kind of proof-theoretic semantics for the base modal logic \(\mathbf{K}\), whose values lie in the closed interval \([0,1]\) of rational numbers [14]. In this paper, after clarifying our conception of bilateralism – dubbed “soft bilateralism” – we generalize the fractional method to encompass extensions and weakenings of \(\mathbf{K}\). Specifically, we introduce well-behaved hypersequent calculi for the deontic logic \(\mathbf{D}\) and the non-normal modal logics \(\mathbf{E}\) and \(\mathbf{M}\) and thoroughly investigate their structural properties. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | modal logic | en |
dc.subject | general proof theory (including proof-theoretic semantics) | en |
dc.subject | many-valued logics | en |
dc.title | Fractional-Valued Modal Logic and Soft Bilateralism | en |
dc.type | Other | |
dc.page.number | 275-299 | |
dc.contributor.authorAffiliation | Piazza, Mario - Scuola Normale Superiore, Classe di Lettere e Filosofia | en |
dc.contributor.authorAffiliation | Pulcini, Gabriele - University of Rome “Tor Vergata”, Department of Literary, Philosophical and Art History Studies | en |
dc.contributor.authorAffiliation | Tesi, Matteo - Scuola Normale Superiore, Classe di Lettere e Filosofia | en |
dc.identifier.eissn | 2449-836X | |
dc.references | A. Avron, A constructive analysis of RM, The Journal of Symbolic Logic, vol. 52(4) (1987), pp. 939–951, DOI: https://doi.org/10.2307/2273828 | en |
dc.references | A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3–4) (1991), pp. 225–248, DOI: https://doi.org/10.1007/BF01531058 | en |
dc.references | A. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] Logic: From foundations to applications, Clarendon Press (1996), pp. 1–32. | en |
dc.references | N. Francez, Bilateralism in proof-theoretic semantics, Journal of Philosophical Logic, vol. 43(2–3) (2014), pp. 239–259, DOI: https://doi.org/10.1007/s10992-012-9261-3 | en |
dc.references | N. Francez, Proof-theoretic Semantics, College Publications (2015). | en |
dc.references | V. Goranko, G. Pulcini, T. Skura, Refutation systems: An overview and some applications to philosophical logics, [in:] F. Liu, H. Ono, J. Yu (eds.), Knowledge, Proof and Dynamics, Springer (2020), pp. 173–197, DOI: https://doi.org/10.1007/978-981-15-2221-5_9 | en |
dc.references | N. Kürbis, Proof-theoretic semantics, a problem with negation and prospects for modality, Journal of Philosophical Logic, vol. 44(6) (2015), pp. 713–727, DOI: https://doi.org/10.1007/s10992-013-9310-6 | en |
dc.references | N. Kürbis, Some comments on Ian Rumfitt’s bilateralism, Journal of Philosophical Logic, vol. 45(6) (2016), pp. 623–644, DOI: https://doi.org/10.1007/s10992-016-9395-9 | en |
dc.references | N. Kürbis, Bilateralist detours: From intuitionist to classical logic and back, [in:] Logique et Analyse, vol. 239 (2017), pp. 301–316, DOI: https://doi.org/10.2143/LEA.239.0.32371556 | en |
dc.references | G. Mints, Lewis’ systems and system T (1965–1973), [in:] Selected papers in proof theory, Bibliopolis (1992), pp. 221–294. | en |
dc.references | G. Mints, A Short Introduction to Modal Logic, Center for the Study of Language (CSLI) (1992). | en |
dc.references | M. Piazza, G. Pulcini, Fractional semantics for classical logic, The Review of Symbolic Logic, vol. 13(4) (2020), pp. 810–828, DOI: https://doi.org/10.1017/S1755020319000431 | en |
dc.references | M. Piazza, G. Pulcini, M. Tesi, Linear logic in a refutational setting, unpublished manuscript. | en |
dc.references | M. Piazza, G. Pulcini, M. Tesi, Fractional-valued modal logic, The Review of Symbolic Logic, (2021), p. 1–20, DOI: https://doi.org/10.1017/S1755020321000411 | en |
dc.references | T. Piecha, P. Schroeder-Heister, Advances in Proof-Theoretic Semantics, Springer (2016). | en |
dc.references | G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900, DOI: https://doi.org/10.2307/2273495 | en |
dc.references | G. Pulcini, A. Varzi, Classical logic through rejection and refutation, [in:] M. Fitting (ed.), Landscapes in logic (Vol. 2), College Publications (1992). | en |
dc.references | G. Pulcini, A. C. Varzi, Complementary Proof Nets for Classical Logic (2023), DOI: https://doi.org/10.1007/s11787-023-00337-9 | en |
dc.references | I. Rumfitt, ‘Yes’ and ‘No’, Mind, vol. 109(436) (2000), pp. 781–823, DOI: https://doi.org/10.1093/mind/109.436.781 | en |
dc.references | T. Skura, Refutation systems in propositional logic, [in:] Handbook of Philosophical Logic: Volume 16, Springer (2010), pp. 115–157, DOI: https://doi.org/10.1007/978-94-007-0479-4_2 | en |
dc.references | H. Wansing, The idea of a proof-theoretic semantics and the meaning of the logical operations, Studia Logica, vol. 64(1) (2000), pp. 3–20, DOI: https://doi.org/10.1023/A:1005217827758 | en |
dc.references | H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46, DOI: https://doi.org/10.1016/j.jal.2017.01.002 | en |
dc.contributor.authorEmail | Piazza, Mario - mario.piazza@sns.it | |
dc.contributor.authorEmail | Pulcini, Gabriele - gabriele.pulcini@uniroma2.it | |
dc.contributor.authorEmail | Tesi, Matteo - matteo.tesi@sns.it | |
dc.identifier.doi | 10.18778/0138-0680.2023.17 | |
dc.relation.volume | 52 | |