Pokaż uproszczony rekord

dc.contributor.authorCeragioli, Leonardo
dc.date.accessioned2023-10-26T14:25:18Z
dc.date.available2023-10-26T14:25:18Z
dc.date.issued2023-07-18
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/48185
dc.description.abstractProof-theoretic semantics is an inferentialist theory of meaning originally developed in a unilateral framework. Its extension to bilateral systems opens both opportunities and problems. The problems are caused especially by Coordination Principles (a kind of rule that is not present in unilateral systems) and mismatches between rules for assertion and rules for rejection. In this paper, a solution is proposed for two major issues: the availability of a reduction procedure for tonk and the existence of harmonious rules for the paradoxical zero-ary connective \(\bullet\). The solution is based on a reinterpretation of bilateral rules as complex rules, that is, rules that introduce or eliminate connectives in a subordinate position. Looking at bilateral rules from this perspective, the problems faced by bilateralism can be seen as special cases of general problems of complex systems, which have been already analyzed in the literature. In the end, a comparison with other proposed solutions underlines the need for further investigation in order to complete the picture of bilateral proof-theoretic semantics.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectbilateralismen
dc.subjectseparabilityen
dc.subjectharmonyen
dc.titleBilateral Rules as Complex Rulesen
dc.typeOther
dc.page.number329-375
dc.contributor.authorAffiliationUniversity of Pisa, Department of Civilizations and Forms of Knowledgeen
dc.identifier.eissn2449-836X
dc.referencesL. Ceragioli, Ex falso and Proof-Theoretic Validity, [in:] L. Bellotti, G. Turbanti (eds.), Fourth Pisa Colloquium in Logic, Language and Epistemology Essays in Honour of Enrico Moriconi, ETS, Pisa (2021).en
dc.referencesL. Ceragioli, Single-Assumption Systems in Proof-Theoretic Semantics, Journal of Philosophical Logic, vol. 51 (2022), pp. 1019–1054, DOI: https://doi.org/10.1007/s10992-022-09658-4en
dc.referencesC. Cozzo, Are Dummett’s requirements on a theory of meaning sufficient for rejecting classical logic?, Erkenntnis, vol. 40 (1994), pp. 243–263, URL: http://www.jstor.org/stable/20012540en
dc.referencesC. Cozzo, Does epistemological holism lead to meaning holism?, Topoi, vol. 21 (2002), pp. 25–45, DOI: https://doi.org/10.1023/A:1014876214057en
dc.referencesC. Cozzo, On the Copernican Turn in Semantics, Theoria, vol. 74 (2008), pp. 295–317, DOI: https://doi.org/10.1111/j.1755-2567.2008.00026.xen
dc.referencesM. Dummett, The Logical Basis of Metaphysics, Harvard University Press, Cambridge (Massachussets) (1991).en
dc.referencesM. Dummett, Elements of Intuitionism, Claredon Press, Oxford (2000).en
dc.referencesR. Dyckhoff, Some Remarks on Proof-Theoretic Semantics, [in:] T. Piecha, P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics, Springer International Publishing, Cham (2016), pp. 79–93, DOI: https://doi.org/10.1007/978-3-319-22686-6_5en
dc.referencesF. Ferreira, The co-ordination principles: A problem for bilateralism, Mind, vol. 117 (2008), pp. 1051–1057, DOI: https://doi.org/10.1093/mind/fzn036en
dc.referencesN. Francez, Bilateralism in Proof-Theoretic Semantics, Journal of Philosophical Logic, vol. 43 (2013), pp. 239–259, DOI: https://doi.org/10.1007/s10992-012-9261-3en
dc.referencesN. Francez, Proof-Theoretic Semantics, College Publications, London (2015).en
dc.referencesN. Francez, Bilateralism does provide a proof theoretic treatment of classical logic (for non-technical reasons), Journal of Applied Logic: The ifColog Journal of Logics and Their Applications, vol. 5(8) (2018), pp. 1653–1662.en
dc.referencesM. Gabbay, Bilateralism does not provide a proof theoretic treatment of classical logic (for technical reasons), Journal of Applied Logic, vol. 25 (2017), pp. S108–S122, DOI: https://doi.org/10.1016/j.jal.2017.11.001en
dc.referencesO. Hjortland, S. Standefer, Inferentialism, structure and conservativeness, [in:] O. Beran, V. Kolman, L. Koreň (eds.), From Rules to Meanings: New Essays on Inferentialism, Routledge, New York, Abingdon (2018), pp. 115–140.en
dc.referencesO. T. Hjortland, Speech Acts, Categoricity, and the Meanings of Logical Connectives, Notre Dame Journal of Formal Logic, vol. 55(4) (2014), pp. 445–467, DOI: https://doi.org/10.1215/00294527-2798700en
dc.referencesB. Jacinto, S. Read, General-Elimination Stability, Studia Logica, vol. 105 (2017), pp. 361–405, DOI: https://doi.org/10.1007/s11225-016-9692-xen
dc.referencesN. Kürbis, Proof-Theoretic Semantics, a Problem with Negation and Prospects for Modality, Journal of Philosophical Logic, vol. 44 (2015), pp. 713–727, URL: http://www.jstor.org/stable/43895412en
dc.referencesN. Kürbis, Some Comments on Ian Rumfitt’s Bilateralism, Journal of Philosophical Logic, vol. 45 (2016), pp. 623–644, DOI: https://doi.org/10.1007/s10992-016-9395-9en
dc.referencesN. Kürbis, Bilateralism: Negations, Implications and some Observations and Problems about Hypotheses, [in:] T. Piecha, J. Fichot (eds.), Beyond Logic. Proceedings of the Conference held in Cerisy-la-Salle, 22–27 May 2017, Tübingen, Germany (2017), DOI: https://doi.org/10.15496/publikation-18676en
dc.referencesN. Kürbis, Normalisation for Bilateral Classical Logic with some Philosophical Remarks, Journal of Applied Logics, vol. 2 (2021), pp. 531–556.en
dc.referencesP. Milne, Classical Harmony: Rules of Inference and the Meaning of the Logical Constants, Synthese, vol. 100 (1994), pp. 49–94, DOI: https://doi.org/10.1007/BF01063921en
dc.referencesP. Milne, Harmony, purity, simplicity and a “seemingly magical fact”, Monist, vol. 85 (2002), pp. 498–534, DOI: https://doi.org/10.5840/monist200285427en
dc.referencesP. Milne, Inversion principles and introduction rules, [in:] H. Wansing (ed.), Dag Prawitz on Proofs and Meaning, chap. 8, vol. 7 of Outstanding Contributions to Logic, Springer, Cham, Heidelberg, New York, Dordrecht, London (2015), pp. 189–224.en
dc.referencesE. Moriconi, L. Tesconi, On Inversion Principles, History and Philosophy of Logic, vol. 29(2) (2008), pp. 103–113, DOI: https://doi.org/10.1080/01445340701830334en
dc.referencesJ. Murzi, Classical Harmony and Separability, Erkenntnis, vol. 85(2) (2020), pp. 391–415, DOI: https://doi.org/10.1007/s10670-018-0032-6en
dc.referencesPiecha, Completeness in Proof-Theoretic Semantics, [in:] T. Piecha, P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics, vol. 43 of Trends in Logic, Springer, Cham (2016), pp. 231–251.en
dc.referencesD. Prawitz, Natural Deduction: A Proof-Theoretic Study, Almqvist & Wiksell, Stockholm (1965).en
dc.referencesD. Prawitz, Ideas and results in proof theory, [in:] J. Fenstad (ed.), Proceedings of the 2. Scandinavian Logic Symposium, North-Holland (1971), pp. 237–309.en
dc.referencesD. Prawitz, Classical versus intuitionistic logic, [in:] B. L. Edward Hermann Haeusler, Wagner de Campos Sanz (ed.), Why is this a Proof?: Festschrift for Luiz Carlos Pereira, College Publications (2015), pp. 15–32.en
dc.referencesA. Prior, The runabout inference ticket, Analysis, vol. 21(2) (1960), pp. 38–39, DOI: https://doi.org/10.1093/analys/21.2.38en
dc.referencesS. Read, Relevant Logic, Basil Blackwell, Oxford, New York (1988).en
dc.referencesS. Read, Harmony and Autonomy in Classical Logic, Journal of Philosophical Logic, (29) (2000), pp. 123–154, DOI: https://doi.org/10.1023/A:1004787622057en
dc.referencesS. Read, Proof-Theoretic Validity, [in:] C. Caret, O. Hjortland (eds.), Foundations of Logical Consequence, Oxford UP (2015), pp. 136–158.en
dc.referencesG. Restall, Multiple Conclusions, [in:] L. V.-V. Petr Hajek, D. Westerstahl (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress, Kings’ College Publications, London (2005), pp. 189–205.en
dc.referencesG. Restall, Assertion and Denial, Commitment and Entitlement, and Incompatibility (and some consequence), [in:] Studies in Logic, vol. 1, Sun Yat-sen University (2008), pp. 26–36.en
dc.referencesI. Rumfitt, “Yes” and “No”, Mind, vol. 109(436) (2000), pp. 781–823, DOI: https://doi.org/10.1093/mind/109.436.781en
dc.referencesT. Sandqvist, Classical logic without bivalence, Analysis, vol. 69 (2009), pp. 211–217, DOI: https://doi.org/10.1093/analys/anp003en
dc.referencesP. Schroeder-Heister, Validity Concepts in Proof-theoretic Semantics, Synthese, vol. 148(3) (2006), pp. 525–571, DOI: https://doi.org/10.1007/s11229-004-6296-1en
dc.referencesF. Steinberger, Harmony and Logical Inferentialism, Ph.D. thesis, University of Cambridge (2008).en
dc.referencesF. Steinberger, Why Conclusions Should Remain Single, Journal of Philosophical Logic, vol. 40(3) (2011), pp. 333–355, DOI: https://doi.org/10.1007/s10992-010-9153-3en
dc.referencesF. Steinberger, J. Murzi, Inferentialism, [in:] Blackwell Companion to Philosophy of Language, Blackwell (2017), pp. 197–224.en
dc.referencesN. Tennant, Inferentialism, Logicism, Harmony, and a Counterpoint, [in:] A. Miller (ed.), Essays for Crispin Wright: Logic, Language and Mathematics, Oxford University Press, Oxford, UK (2020), pp. 223–247.en
dc.referencesL. Tranchini, Harmonising harmony, The Review of Symbolic Logic, vol. 8(3) (2015), pp. 411–423, DOI: https://doi.org/10.1017/S1755020315000179en
dc.contributor.authorEmailleonardo.ceragioli@unifi.it
dc.identifier.doi10.18778/0138-0680.2023.13
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0