dc.contributor.author | Ceragioli, Leonardo | |
dc.date.accessioned | 2023-10-26T14:25:18Z | |
dc.date.available | 2023-10-26T14:25:18Z | |
dc.date.issued | 2023-07-18 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/48185 | |
dc.description.abstract | Proof-theoretic semantics is an inferentialist theory of meaning originally developed in a unilateral framework. Its extension to bilateral systems opens both opportunities and problems. The problems are caused especially by Coordination Principles (a kind of rule that is not present in unilateral systems) and mismatches between rules for assertion and rules for rejection. In this paper, a solution is proposed for two major issues: the availability of a reduction procedure for tonk and the existence of harmonious rules for the paradoxical zero-ary connective \(\bullet\). The solution is based on a reinterpretation of bilateral rules as complex rules, that is, rules that introduce or eliminate connectives in a subordinate position. Looking at bilateral rules from this perspective, the problems faced by bilateralism can be seen as special cases of general problems of complex systems, which have been already analyzed in the literature. In the end, a comparison with other proposed solutions underlines the need for further investigation in order to complete the picture of bilateral proof-theoretic semantics. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | bilateralism | en |
dc.subject | separability | en |
dc.subject | harmony | en |
dc.title | Bilateral Rules as Complex Rules | en |
dc.type | Other | |
dc.page.number | 329-375 | |
dc.contributor.authorAffiliation | University of Pisa, Department of Civilizations and Forms of Knowledge | en |
dc.identifier.eissn | 2449-836X | |
dc.references | L. Ceragioli, Ex falso and Proof-Theoretic Validity, [in:] L. Bellotti, G. Turbanti (eds.), Fourth Pisa Colloquium in Logic, Language and Epistemology Essays in Honour of Enrico Moriconi, ETS, Pisa (2021). | en |
dc.references | L. Ceragioli, Single-Assumption Systems in Proof-Theoretic Semantics, Journal of Philosophical Logic, vol. 51 (2022), pp. 1019–1054, DOI: https://doi.org/10.1007/s10992-022-09658-4 | en |
dc.references | C. Cozzo, Are Dummett’s requirements on a theory of meaning sufficient for rejecting classical logic?, Erkenntnis, vol. 40 (1994), pp. 243–263, URL: http://www.jstor.org/stable/20012540 | en |
dc.references | C. Cozzo, Does epistemological holism lead to meaning holism?, Topoi, vol. 21 (2002), pp. 25–45, DOI: https://doi.org/10.1023/A:1014876214057 | en |
dc.references | C. Cozzo, On the Copernican Turn in Semantics, Theoria, vol. 74 (2008), pp. 295–317, DOI: https://doi.org/10.1111/j.1755-2567.2008.00026.x | en |
dc.references | M. Dummett, The Logical Basis of Metaphysics, Harvard University Press, Cambridge (Massachussets) (1991). | en |
dc.references | M. Dummett, Elements of Intuitionism, Claredon Press, Oxford (2000). | en |
dc.references | R. Dyckhoff, Some Remarks on Proof-Theoretic Semantics, [in:] T. Piecha, P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics, Springer International Publishing, Cham (2016), pp. 79–93, DOI: https://doi.org/10.1007/978-3-319-22686-6_5 | en |
dc.references | F. Ferreira, The co-ordination principles: A problem for bilateralism, Mind, vol. 117 (2008), pp. 1051–1057, DOI: https://doi.org/10.1093/mind/fzn036 | en |
dc.references | N. Francez, Bilateralism in Proof-Theoretic Semantics, Journal of Philosophical Logic, vol. 43 (2013), pp. 239–259, DOI: https://doi.org/10.1007/s10992-012-9261-3 | en |
dc.references | N. Francez, Proof-Theoretic Semantics, College Publications, London (2015). | en |
dc.references | N. Francez, Bilateralism does provide a proof theoretic treatment of classical logic (for non-technical reasons), Journal of Applied Logic: The ifColog Journal of Logics and Their Applications, vol. 5(8) (2018), pp. 1653–1662. | en |
dc.references | M. Gabbay, Bilateralism does not provide a proof theoretic treatment of classical logic (for technical reasons), Journal of Applied Logic, vol. 25 (2017), pp. S108–S122, DOI: https://doi.org/10.1016/j.jal.2017.11.001 | en |
dc.references | O. Hjortland, S. Standefer, Inferentialism, structure and conservativeness, [in:] O. Beran, V. Kolman, L. Koreň (eds.), From Rules to Meanings: New Essays on Inferentialism, Routledge, New York, Abingdon (2018), pp. 115–140. | en |
dc.references | O. T. Hjortland, Speech Acts, Categoricity, and the Meanings of Logical Connectives, Notre Dame Journal of Formal Logic, vol. 55(4) (2014), pp. 445–467, DOI: https://doi.org/10.1215/00294527-2798700 | en |
dc.references | B. Jacinto, S. Read, General-Elimination Stability, Studia Logica, vol. 105 (2017), pp. 361–405, DOI: https://doi.org/10.1007/s11225-016-9692-x | en |
dc.references | N. Kürbis, Proof-Theoretic Semantics, a Problem with Negation and Prospects for Modality, Journal of Philosophical Logic, vol. 44 (2015), pp. 713–727, URL: http://www.jstor.org/stable/43895412 | en |
dc.references | N. Kürbis, Some Comments on Ian Rumfitt’s Bilateralism, Journal of Philosophical Logic, vol. 45 (2016), pp. 623–644, DOI: https://doi.org/10.1007/s10992-016-9395-9 | en |
dc.references | N. Kürbis, Bilateralism: Negations, Implications and some Observations and Problems about Hypotheses, [in:] T. Piecha, J. Fichot (eds.), Beyond Logic. Proceedings of the Conference held in Cerisy-la-Salle, 22–27 May 2017, Tübingen, Germany (2017), DOI: https://doi.org/10.15496/publikation-18676 | en |
dc.references | N. Kürbis, Normalisation for Bilateral Classical Logic with some Philosophical Remarks, Journal of Applied Logics, vol. 2 (2021), pp. 531–556. | en |
dc.references | P. Milne, Classical Harmony: Rules of Inference and the Meaning of the Logical Constants, Synthese, vol. 100 (1994), pp. 49–94, DOI: https://doi.org/10.1007/BF01063921 | en |
dc.references | P. Milne, Harmony, purity, simplicity and a “seemingly magical fact”, Monist, vol. 85 (2002), pp. 498–534, DOI: https://doi.org/10.5840/monist200285427 | en |
dc.references | P. Milne, Inversion principles and introduction rules, [in:] H. Wansing (ed.), Dag Prawitz on Proofs and Meaning, chap. 8, vol. 7 of Outstanding Contributions to Logic, Springer, Cham, Heidelberg, New York, Dordrecht, London (2015), pp. 189–224. | en |
dc.references | E. Moriconi, L. Tesconi, On Inversion Principles, History and Philosophy of Logic, vol. 29(2) (2008), pp. 103–113, DOI: https://doi.org/10.1080/01445340701830334 | en |
dc.references | J. Murzi, Classical Harmony and Separability, Erkenntnis, vol. 85(2) (2020), pp. 391–415, DOI: https://doi.org/10.1007/s10670-018-0032-6 | en |
dc.references | Piecha, Completeness in Proof-Theoretic Semantics, [in:] T. Piecha, P. Schroeder-Heister (eds.), Advances in Proof-Theoretic Semantics, vol. 43 of Trends in Logic, Springer, Cham (2016), pp. 231–251. | en |
dc.references | D. Prawitz, Natural Deduction: A Proof-Theoretic Study, Almqvist & Wiksell, Stockholm (1965). | en |
dc.references | D. Prawitz, Ideas and results in proof theory, [in:] J. Fenstad (ed.), Proceedings of the 2. Scandinavian Logic Symposium, North-Holland (1971), pp. 237–309. | en |
dc.references | D. Prawitz, Classical versus intuitionistic logic, [in:] B. L. Edward Hermann Haeusler, Wagner de Campos Sanz (ed.), Why is this a Proof?: Festschrift for Luiz Carlos Pereira, College Publications (2015), pp. 15–32. | en |
dc.references | A. Prior, The runabout inference ticket, Analysis, vol. 21(2) (1960), pp. 38–39, DOI: https://doi.org/10.1093/analys/21.2.38 | en |
dc.references | S. Read, Relevant Logic, Basil Blackwell, Oxford, New York (1988). | en |
dc.references | S. Read, Harmony and Autonomy in Classical Logic, Journal of Philosophical Logic, (29) (2000), pp. 123–154, DOI: https://doi.org/10.1023/A:1004787622057 | en |
dc.references | S. Read, Proof-Theoretic Validity, [in:] C. Caret, O. Hjortland (eds.), Foundations of Logical Consequence, Oxford UP (2015), pp. 136–158. | en |
dc.references | G. Restall, Multiple Conclusions, [in:] L. V.-V. Petr Hajek, D. Westerstahl (eds.), Logic, Methodology and Philosophy of Science: Proceedings of the Twelfth International Congress, Kings’ College Publications, London (2005), pp. 189–205. | en |
dc.references | G. Restall, Assertion and Denial, Commitment and Entitlement, and Incompatibility (and some consequence), [in:] Studies in Logic, vol. 1, Sun Yat-sen University (2008), pp. 26–36. | en |
dc.references | I. Rumfitt, “Yes” and “No”, Mind, vol. 109(436) (2000), pp. 781–823, DOI: https://doi.org/10.1093/mind/109.436.781 | en |
dc.references | T. Sandqvist, Classical logic without bivalence, Analysis, vol. 69 (2009), pp. 211–217, DOI: https://doi.org/10.1093/analys/anp003 | en |
dc.references | P. Schroeder-Heister, Validity Concepts in Proof-theoretic Semantics, Synthese, vol. 148(3) (2006), pp. 525–571, DOI: https://doi.org/10.1007/s11229-004-6296-1 | en |
dc.references | F. Steinberger, Harmony and Logical Inferentialism, Ph.D. thesis, University of Cambridge (2008). | en |
dc.references | F. Steinberger, Why Conclusions Should Remain Single, Journal of Philosophical Logic, vol. 40(3) (2011), pp. 333–355, DOI: https://doi.org/10.1007/s10992-010-9153-3 | en |
dc.references | F. Steinberger, J. Murzi, Inferentialism, [in:] Blackwell Companion to Philosophy of Language, Blackwell (2017), pp. 197–224. | en |
dc.references | N. Tennant, Inferentialism, Logicism, Harmony, and a Counterpoint, [in:] A. Miller (ed.), Essays for Crispin Wright: Logic, Language and Mathematics, Oxford University Press, Oxford, UK (2020), pp. 223–247. | en |
dc.references | L. Tranchini, Harmonising harmony, The Review of Symbolic Logic, vol. 8(3) (2015), pp. 411–423, DOI: https://doi.org/10.1017/S1755020315000179 | en |
dc.contributor.authorEmail | leonardo.ceragioli@unifi.it | |
dc.identifier.doi | 10.18778/0138-0680.2023.13 | |
dc.relation.volume | 52 | |