Pokaż uproszczony rekord

dc.contributor.authordel Valle-Inclan, Pedro
dc.date.accessioned2023-10-26T14:25:19Z
dc.date.available2023-10-26T14:25:19Z
dc.date.issued2023-07-18
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/48186
dc.description.abstractIn a recent paper del Valle-Inclan and Schlöder argue that bilateral calculi call for their own notion of proof-theoretic harmony, distinct from the usual (or ‘unilateral’) ones. They then put forward a specifically bilateral criterion of harmony, and present a harmonious bilateral calculus for classical logic.In this paper, I show how del Valle-Inclan and Schlöder’s criterion of harmony suggests a notion of normal form for bilateral systems, and prove normalisation for two (harmonious) bilateral calculi for classical logic, HB1 and HB2. The resulting normal derivations have the usual desirable features, like the separation and subformula properties. HB1-normal form turns out to be strictly stronger that the notion of normal form proposed by Nils Kürbis, and HB2-normal form is neither stronger nor weaker than a similar proposal by Marcello D’Agostino, Dov Gabbay, and Sanjay Modgyl.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectbilateralismen
dc.subjectnormalisationen
dc.subjectharmonyen
dc.titleHarmony and Normalisation in Bilateral Logicen
dc.typeOther
dc.page.number377-409
dc.contributor.authorAffiliationScuola Normale Superiore, Department of Philosophyen
dc.identifier.eissn2449-836X
dc.referencesM. D’Agostino, D. Gabbay, S. Modgil, Normality, Non-Contamination and Logical Depth in Classical Natural Deduction, Studia Logica, vol. 108(2) (2020), pp. 291–357, DOI: https://doi.org/10.1007/s11225-019-09847-4en
dc.referencesP. del Valle-Inclan, J. J. Schlöder, Coordination and Harmony in Bilateral Logic, Mind, (2022), DOI: https://doi.org/10.1093/mind/fzac012en
dc.referencesM. Dummett, The Logical Basis of Metaphysics, Harvard University Press (1991).en
dc.referencesF. Ferreira, The Co-Ordination Principles: A Problem for Bilateralism, Mind, vol. 117(468) (2008), pp. 1051–1057, DOI: https://doi.org/10.1093/mind/fzn036en
dc.referencesN. Kürbis, Some Comments on Ian Rumfitt’s Bilateralism, Journal of Philosophical Logic, vol. 45(6) (2016), pp. 623–644, DOI: https://doi.org/10.1007/s10992-016-9395-9en
dc.referencesN. Kürbis, Normalisation for Bilateral Classical Logic with Some Philosophical Remarks, Journal of Applied Logics, vol. 2(8) (2021), pp. 531–556.en
dc.referencesD. Prawitz, Natural Deduction: A Proof-Theoretical Study, Stockholm, Sweden: Dover Publications (1965).en
dc.referencesA. N. Prior, The Runabout Inference-Ticket, Analysis, vol. 21(2) (1960), p. 38, DOI: https://doi.org/10.1093/analys/21.2.38en
dc.referencesI. Rumfitt, Yes and No, Mind, vol. 109(436) (2000), pp. 781–823, DOI: https://doi.org/10.1093/mind/109.436.781en
dc.referencesF. Steinberger, On the Equivalence Conjecture for Proof-Theoretic Harmony, Notre Dame Journal of Formal Logic, vol. 54(1) (2013), pp. 79–86, DOI: https://doi.org/10.1215/00294527-1731398en
dc.referencesN. Tennant, Negation, Absurdity and Contrariety, [in:] D. M. Gabbay, H. Wansing (eds.), What is Negation?, Springer Netherlands, Dordrecht (1999), pp. 199–222, DOI: https://doi.org/10.1007/978-94-015-9309-0_10en
dc.contributor.authorEmailpedro.delvalleinclan@sns.it
dc.identifier.doi10.18778/0138-0680.2023.14
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0