dc.contributor.author | Hamidi , Mohammad | |
dc.date.accessioned | 2024-01-04T12:38:38Z | |
dc.date.available | 2024-01-04T12:38:38Z | |
dc.date.issued | 2023-08-10 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/49157 | |
dc.description.abstract | This paper introduces the concept of single-valued neutrosophic hyper \(BCK\)-subalgebras as a generalization and alternative of hyper \(BCK\)-algebras and on any given nonempty set constructs at least one single-valued neutrosophic hyper \(BCK\)-subalgebra and one a single-valued neutrosophic hyper \(BCK\)-ideal. In this study level subsets play the main role in the connection between singlevalued neutrosophic hyper \(BCK\)-subalgebras and hyper \(BCK\)-subalgebras and the connection between single-valued neutrosophic hyper \(BCK\)-ideals and hyper \(BCK\)-ideals. The congruence and (strongly) regular equivalence relations are the important tools for connecting hyperstructures and structures, so the major contribution of this study is to apply and introduce a (strongly) regular relation on hyper \(BCK\)-algebras and to investigate their categorical properties (quasi commutative diagram) via single-valued neutrosophic hyper \(BCK\)-ideals. Indeed, by using the single-valued neutrosophic hyper \(BCK\)-ideals, we define a congruence relation on (weak commutative) hyper \(BCK\)-algebras that under some conditions is strongly regular and the quotient of any (single-valued neutrosophic)hyper \(BCK\)-(sub)algebra via this relation is a (single-valued neutrosophic)(hyper \(BCK\)-subalgebra) \(BCK\)-(sub)algebra. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | single-valued neutrosophic (hyper)\(BCK\)-subalgebra | en |
dc.subject | quasi commutative diagram | en |
dc.subject | extendable single-valued neutrosophic (hyper)\(BCK\)-ideal | en |
dc.title | Extended BCK-Ideal Based on Single-Valued Neutrosophic Hyper BCK-Ideals | en |
dc.type | Other | |
dc.page.number | 411-440 | |
dc.contributor.authorAffiliation | University of Payame Noor, Department of Mathematics | en |
dc.identifier.eissn | 2449-836X | |
dc.references | R. A. Borzooei, R. Ameri, M. Hamidi, Fundamental relation on hyper BCKalgebras, Analele Universitatii din Oradea-Fascicola Matematica, vol. 21(1) (2014), pp. 123–136. | en |
dc.references | S. S. Goraghani, On Fuzzy Quotient BCK-algebras, TWMS Journal of Applied and Engineering Mathematics, vol. 10(1) (2020), pp. 59–68, URL: https://jaem.isikun.edu.tr/web/index.php/archive/104-vol10no1/491-on-fuzzy-quotient-bck-algebras | en |
dc.references | M. Hamidi, A. B. Saied, Accessible single-valued neutrosophic graphs, Journal of Computational and Applied Mathematics, vol. 57 (2018), pp. 121–146, DOI: https://doi.org/10.1007/s12190-017-1098-z | en |
dc.references | M. Hamidi, F. Smarandache, Single-valued neutrosophic directed (Hyper) graphs and applications in networks, Journal of Intelligent & Fuzzy Systems, vol. 37(2) (2019), pp. 2869–2885, DOI: https://doi.org/10.3233/JIFS-190036 | en |
dc.references | M. Hamidi, F. Smarandache, Derivable Single Valued Neutrosophic Graphs Based on KM-single-valued neutrosophic Metric, IEEE Access, vol. 8 (2020), pp. 131076–131087, DOI: https://doi.org/10.1109/ACCESS.2020.3006164 | en |
dc.references | M. Hamidi, F. Smarandache, Neutro-BCK-Algebra, International Journal of Neutrosophic Science, vol. 8 (2020), pp. 110–117, URL: https://digitalrepository.unm.edu/math_fsp | en |
dc.references | M. Hamidi, F. Smarandache, Single-Valued Neutro Hyper BCK-Subalgebras, Journal of Mathematics, vol. 2021 (2021), pp. 1–11, DOI: https://doi.org/10.1155/2021/6656739 | en |
dc.references | Y. Imai, K. Iseki, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Bulletin of the Section of Logic, vol. 42 (1966), pp. 19–22, DOI: https://doi.org/10.3792/pja/1195522169 | en |
dc.references | Y. B. Jun, M. Khan, F. Smarandache, S. Z. Song, Length Neutrosophic Subalgebras of BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(4) (2020), pp. 377–400, DOI: https://doi.org/10.18778/0138-0680.2020.21 | en |
dc.references | Y. B. Jun, S. Z. Song, Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(1) (2020), pp. 53–78, DOI: https://doi.org/10.18778/0138-0680.2020.03 | en |
dc.references | Y. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCKalgebras, Italian Journal of Pure and Applied Mathematics, vol. 10 (2000), pp. 127–136. | en |
dc.references | S. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Neutrosophic Hyper BCK-Ideals, Neutrosophic Sets and Systems, vol. 27 (2019), pp. 201–217, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/626 | en |
dc.references | S. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Fuzzy Soft Positive Implicative Hyper BCK-ideals Of Several Types, Miskolc Mathematical Notes, vol. 22(1) (2021), pp. 299–315, DOI: https://doi.org/10.18514/MMN.2021.2855 | en |
dc.references | N. Kouhestani, S. Mehrshad, (Semi)topological quotient BCK-algebras, Afrika Matematika, vol. 28 (2017), pp. 1235–1251, DOI: https://doi.org/10.1007/s13370-017-0513-9 | en |
dc.references | G. Muhiuddin, A. N. Al-Kenani, E. H. Roh, Y. B. Jun, Implicative Neutrosophic Quadruple BCK-Algebras and Ideals, Symmetry, vol. 11(2) (2019), p. 277, DOI: https://doi.org/10.3390/sym11020277 | en |
dc.references | R. Naghibi, S. M. Anvariyeh, Construction of an HV-K-algebra from a BCK-algebra based on Ends Lemma, Journal of Discrete Mathematical Sciences and Cryptography, vol. 25(2) (2022), pp. 405–425, DOI: https://doi.org/10.1080/09720529.2019.1689606 | en |
dc.references | M. Shamsizadeh, Single Valued Neutrosophic General Machine, Neutrosophic Sets and Systems, vol. 490 (2022), pp. 509–530, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/2502 | en |
dc.references | F. Smarandache, Neutrosophic Set, a generalisation of the intuitionistic single-valued neutrosophic sets, International Journal of Pure and Applied Mathematics, vol. 24 (2005), pp. 287–297, URL: https://digitalrepository.unm.edu/math_fsp | en |
dc.references | F. Smarandache, Generalizations and Alternatives of Classical Algebraic Structures to Neutroalgebraic Structures and Antialgebraic Structures, Journal of Fuzzy Extension and Applications, vol. 1(2) (2020), pp. 85–87, DOI: https://doi.org/10.22105/jfea.2020.248816.1008 | en |
dc.references | M. M. Takallo, R. A. Borzooei, S. Z. Song, Y. B. Jun, Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets, AIMS Mathematics, vol. 6(10) (1965), pp. 11029–11045, DOI: https://doi.org/10.3934/math.2021640 | en |
dc.references | L. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (2021), pp. 338–353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-X | en |
dc.references | Y. Zeng, H. Ren, T. Yang, S. Xiao, N. Xiong, A Novel Similarity Measure of Single-Valued Neutrosophic Sets Based on Modified Manhattan Distance and Its Applications, Electronics, vol. 11(6) (2022), p. 941, DOI: https://doi.org/10.3390/electronics11060941 | en |
dc.references | J. Zhan, M. Hamidi, A. B. Saeid, Extended Fuzzy BCK-Subalgebras, Iranian Journal of Fuzzy Systems, vol. 13(4) (2016), pp. 125–144, DOI: https://doi.org/10.22111/IJFS.2016.2600 | en |
dc.contributor.authorEmail | m.hamidi@pnu.ac.ir | |
dc.identifier.doi | 10.18778/0138-0680.2023.20 | |
dc.relation.volume | 52 | |