Pokaż uproszczony rekord

dc.contributor.authorHamidi , Mohammad
dc.date.accessioned2024-01-04T12:38:38Z
dc.date.available2024-01-04T12:38:38Z
dc.date.issued2023-08-10
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/49157
dc.description.abstractThis paper introduces the concept of single-valued neutrosophic hyper \(BCK\)-subalgebras as a generalization and alternative of hyper \(BCK\)-algebras and on any given nonempty set constructs at least one single-valued neutrosophic hyper \(BCK\)-subalgebra and one a single-valued neutrosophic hyper \(BCK\)-ideal. In this study level subsets play the main role in the connection between singlevalued neutrosophic hyper \(BCK\)-subalgebras and hyper \(BCK\)-subalgebras and the connection between single-valued neutrosophic hyper \(BCK\)-ideals and hyper \(BCK\)-ideals. The congruence and (strongly) regular equivalence relations are the important tools for connecting hyperstructures and structures, so the major contribution of this study is to apply and introduce a (strongly) regular relation on hyper \(BCK\)-algebras and to investigate their categorical properties (quasi commutative diagram) via single-valued neutrosophic hyper \(BCK\)-ideals. Indeed, by using the single-valued neutrosophic hyper \(BCK\)-ideals, we define a congruence relation on (weak commutative) hyper \(BCK\)-algebras that under some conditions is strongly regular and the quotient of any (single-valued neutrosophic)hyper \(BCK\)-(sub)algebra via this relation is a (single-valued neutrosophic)(hyper \(BCK\)-subalgebra) \(BCK\)-(sub)algebra.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectsingle-valued neutrosophic (hyper)\(BCK\)-subalgebraen
dc.subjectquasi commutative diagramen
dc.subjectextendable single-valued neutrosophic (hyper)\(BCK\)-idealen
dc.titleExtended BCK-Ideal Based on Single-Valued Neutrosophic Hyper BCK-Idealsen
dc.typeOther
dc.page.number411-440
dc.contributor.authorAffiliationUniversity of Payame Noor, Department of Mathematicsen
dc.identifier.eissn2449-836X
dc.referencesR. A. Borzooei, R. Ameri, M. Hamidi, Fundamental relation on hyper BCKalgebras, Analele Universitatii din Oradea-Fascicola Matematica, vol. 21(1) (2014), pp. 123–136.en
dc.referencesS. S. Goraghani, On Fuzzy Quotient BCK-algebras, TWMS Journal of Applied and Engineering Mathematics, vol. 10(1) (2020), pp. 59–68, URL: https://jaem.isikun.edu.tr/web/index.php/archive/104-vol10no1/491-on-fuzzy-quotient-bck-algebrasen
dc.referencesM. Hamidi, A. B. Saied, Accessible single-valued neutrosophic graphs, Journal of Computational and Applied Mathematics, vol. 57 (2018), pp. 121–146, DOI: https://doi.org/10.1007/s12190-017-1098-zen
dc.referencesM. Hamidi, F. Smarandache, Single-valued neutrosophic directed (Hyper) graphs and applications in networks, Journal of Intelligent & Fuzzy Systems, vol. 37(2) (2019), pp. 2869–2885, DOI: https://doi.org/10.3233/JIFS-190036en
dc.referencesM. Hamidi, F. Smarandache, Derivable Single Valued Neutrosophic Graphs Based on KM-single-valued neutrosophic Metric, IEEE Access, vol. 8 (2020), pp. 131076–131087, DOI: https://doi.org/10.1109/ACCESS.2020.3006164en
dc.referencesM. Hamidi, F. Smarandache, Neutro-BCK-Algebra, International Journal of Neutrosophic Science, vol. 8 (2020), pp. 110–117, URL: https://digitalrepository.unm.edu/math_fspen
dc.referencesM. Hamidi, F. Smarandache, Single-Valued Neutro Hyper BCK-Subalgebras, Journal of Mathematics, vol. 2021 (2021), pp. 1–11, DOI: https://doi.org/10.1155/2021/6656739en
dc.referencesY. Imai, K. Iseki, Proceedings of the Japan Academy, Series A, Mathematical Sciences, Bulletin of the Section of Logic, vol. 42 (1966), pp. 19–22, DOI: https://doi.org/10.3792/pja/1195522169en
dc.referencesY. B. Jun, M. Khan, F. Smarandache, S. Z. Song, Length Neutrosophic Subalgebras of BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(4) (2020), pp. 377–400, DOI: https://doi.org/10.18778/0138-0680.2020.21en
dc.referencesY. B. Jun, S. Z. Song, Inf-Hesitant Fuzzy Ideals in BCK/BCI-Algebras, Bulletin of the Section of Logic, vol. 49(1) (2020), pp. 53–78, DOI: https://doi.org/10.18778/0138-0680.2020.03en
dc.referencesY. B. Jun, M. M. Zahedi, X. L. Xin, R. A. Borzooei, On hyper BCKalgebras, Italian Journal of Pure and Applied Mathematics, vol. 10 (2000), pp. 127–136.en
dc.referencesS. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Neutrosophic Hyper BCK-Ideals, Neutrosophic Sets and Systems, vol. 27 (2019), pp. 201–217, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/626en
dc.referencesS. Khademan, M. M. Zahedi, R. A. Borzooei, Y. B. Jun, Fuzzy Soft Positive Implicative Hyper BCK-ideals Of Several Types, Miskolc Mathematical Notes, vol. 22(1) (2021), pp. 299–315, DOI: https://doi.org/10.18514/MMN.2021.2855en
dc.referencesN. Kouhestani, S. Mehrshad, (Semi)topological quotient BCK-algebras, Afrika Matematika, vol. 28 (2017), pp. 1235–1251, DOI: https://doi.org/10.1007/s13370-017-0513-9en
dc.referencesG. Muhiuddin, A. N. Al-Kenani, E. H. Roh, Y. B. Jun, Implicative Neutrosophic Quadruple BCK-Algebras and Ideals, Symmetry, vol. 11(2) (2019), p. 277, DOI: https://doi.org/10.3390/sym11020277en
dc.referencesR. Naghibi, S. M. Anvariyeh, Construction of an HV-K-algebra from a BCK-algebra based on Ends Lemma, Journal of Discrete Mathematical Sciences and Cryptography, vol. 25(2) (2022), pp. 405–425, DOI: https://doi.org/10.1080/09720529.2019.1689606en
dc.referencesM. Shamsizadeh, Single Valued Neutrosophic General Machine, Neutrosophic Sets and Systems, vol. 490 (2022), pp. 509–530, URL: http://fs.unm.edu/NSS2/index.php/111/article/view/2502en
dc.referencesF. Smarandache, Neutrosophic Set, a generalisation of the intuitionistic single-valued neutrosophic sets, International Journal of Pure and Applied Mathematics, vol. 24 (2005), pp. 287–297, URL: https://digitalrepository.unm.edu/math_fspen
dc.referencesF. Smarandache, Generalizations and Alternatives of Classical Algebraic Structures to Neutroalgebraic Structures and Antialgebraic Structures, Journal of Fuzzy Extension and Applications, vol. 1(2) (2020), pp. 85–87, DOI: https://doi.org/10.22105/jfea.2020.248816.1008en
dc.referencesM. M. Takallo, R. A. Borzooei, S. Z. Song, Y. B. Jun, Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets, AIMS Mathematics, vol. 6(10) (1965), pp. 11029–11045, DOI: https://doi.org/10.3934/math.2021640en
dc.referencesL. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (2021), pp. 338–353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-Xen
dc.referencesY. Zeng, H. Ren, T. Yang, S. Xiao, N. Xiong, A Novel Similarity Measure of Single-Valued Neutrosophic Sets Based on Modified Manhattan Distance and Its Applications, Electronics, vol. 11(6) (2022), p. 941, DOI: https://doi.org/10.3390/electronics11060941en
dc.referencesJ. Zhan, M. Hamidi, A. B. Saeid, Extended Fuzzy BCK-Subalgebras, Iranian Journal of Fuzzy Systems, vol. 13(4) (2016), pp. 125–144, DOI: https://doi.org/10.22111/IJFS.2016.2600en
dc.contributor.authorEmailm.hamidi@pnu.ac.ir
dc.identifier.doi10.18778/0138-0680.2023.20
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0