Show simple item record

dc.contributor.authorMartini, Simone
dc.contributor.authorMasini, Andrea
dc.contributor.authorZorzi, Margherita
dc.date.accessioned2024-01-04T12:38:39Z
dc.date.available2024-01-04T12:38:39Z
dc.date.issued2023-09-25
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/49159
dc.description.abstractWe present a syntactical cut-elimination proof for an extended sequent calculus covering the classical modal logics in the \(\mathsf{K}\), \(\mathsf{D}\), \(\mathsf{T}\), \(\mathsf{K4}\), \(\mathsf{D4}\) and \(\mathsf{S4}\) spectrum. We design the systems uniformly since they all share the same set of rules. Different logics are obtained by “tuning” a single parameter, namely a constraint on the applicability of the cut rule and on the (left and right, respectively) rules for \(\Box\) and \(\Diamond\). Starting points for this research are 2-sequents and indexed-based calculi (sequents and tableaux). By extending and modifying existing proposals, we show how to achieve a syntactical proof of the cut-elimination theorem that is as close as possible to the one for first-order classical logic. In doing this, we implicitly show how small is the proof-theoretical distance between classical logic and the systems under consideration.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectproof theoryen
dc.subjectsequent calculusen
dc.subjectcut eliminationen
dc.subjectmodal logicen
dc.subject2-sequentsen
dc.titleCut Elimination for Extended Sequent Calculien
dc.typeOther
dc.page.number459-495
dc.contributor.authorAffiliationMartini, Simone - Universit`a di Bologna, Dipartimento di Informatica – Scienza e Ingegneriaen
dc.contributor.authorAffiliationMasini, Andrea - Universit`a di Verona, Dipartimento di Informaticaen
dc.contributor.authorAffiliationZorzi, Margherita - Universit`a di Verona, Dipartimento di Informaticaen
dc.identifier.eissn2449-836X
dc.referencesA. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.), Logic: From Foundations to Applications, Oxford Science Publications, Clarendon Press, New York (1996), pp. 1–32.en
dc.referencesJ. L. Bell, M. Machover, A course in mathematical logic, North Holland, Amsterdam (1977).en
dc.referencesS. Burns, R. Zach, Cut-free completeness for modular hypersequent calculi for modal Logics K, T, and D, Review of Symbolic Logic, vol. 14(4) (2021), pp. 910–929, DOI: https://doi.org/10.1017/s1755020320000180en
dc.referencesC. Cerrato, Cut-free modal sequents for normal modal logics, Notre Dame Journal of Formal Logic, vol. 34(4) (1993), pp. 564–582, DOI: https://doi.org/10.1305/ndjfl/1093633906en
dc.referencesC. Cerrato, Modal tree-sequents, Mathematical Logic Quarterly, vol. 42(2) (1996), pp. 197–210, DOI: https://doi.org/10.1002/malq.19960420117en
dc.referencesA. Ciabattoni, R. Ramanayake, H. Wansing, Hypersequent and display calculi—a unified perspective, Studia Logica, vol. 102(6) (2014), pp. 1245–1294, DOI: https://doi.org/10.1007/s11225-014-9566-zen
dc.referencesM. Fitting, Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic, vol. 13(2) (1972), pp. 237–247, DOI: https://doi.org/10.1305/ndjfl/1093894722en
dc.referencesM. Fitting, Proof methods for modal and intuitionistic logics, Springer–Verlag (1983).en
dc.referencesM. Fitting, Prefixed tableaus and nested sequents, Annals of Pure and Applied Logic, vol. 163(3) (2012), pp. 291–313, DOI: https://doi.org/10.1016/j.apal.2011.09.004en
dc.referencesD. M. Gabbay, R. J. G. B. de Queiroz, Extending the Curry-Howard interpretation to linear, relevant and other resource logics, Journal of Symbolic Logic, vol. 57(4) (1992), pp. 1319–1365, DOI: https://doi.org/10.2307/2275370en
dc.referencesJ.-Y. Girard, Proof theory and logical complexity, vol. 1, Bibliopolis, Naples (1987).en
dc.referencesS. Guerrini, S. Martini, A. Masini, An analysis of (linear) exponentials based on extended sequents, Logic Journal of the IGPL, vol. 6(5) (1998), pp. 735–753, DOI: https://doi.org/10.1093/jigpal/6.5.735en
dc.referencesB. Lellmann, Linear nested sequents, 2-sequents and hypersequents, [in:] H. de Nivelle (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2015, vol. 9323 of Lecture Notes in Computer Science, Springer (2015), pp. 135–150, DOI: https://doi.org/10.1007/978-3-319-24312-2_10en
dc.referencesB. Lellmann, D. Pattinson, Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic, [in:] K. Lodaya (ed.), Logic and Its Applications, 5th Indian Conference, ICLA 2013, vol. 7750 of Lecture Notes in Computer Science, Springer (2013), pp. 148–160, DOI: https://doi.org/10.1007/978-3-642-36039-8_14en
dc.referencesB. Lellmann, E. Pimentel, Modularisation of sequent calculi for normal and non-normal modalities, ACM Transactions on Compututational Logic, vol. 20(2) (2019), pp. 7:1–7:46, DOI: https://doi.org/10.1145/3288757en
dc.referencesS. Martini, A. Masini, On the fine structure of the exponential rule, [in:] J.-Y. Girard, Y. Lafont, L. Regnier (eds.), Advances in Linear Logic, Cambridge University Press (1993), pp. 197–210.en
dc.referencesS. Martini, A. Masini, A Computational Interpretation of Modal Proofs, [in:] H. Wansing (ed.), Proof Theory of Modal Logics, Kluwer (1994), pp. 213–241.en
dc.referencesS. Martini, A. Masini, M. Zorzi, From 2-sequents and linear nested sequents to natural eduction for normal modal logics, ACM Transactions on Compututational Logic, vol. 22(3) (2021), pp. 19:1–19:29, DOI: https://doi.org/10.1145/3461661en
dc.referencesA. Masini, 2-Sequent calculus: A proof theory of modalities, Annals of Pure and Applied Logic, vol. 58(3) (1992), pp. 229–246, DOI: https://doi.org/10.1016/0168-0072(92)90029-Yen
dc.referencesA. Masini, 2-Sequent calculus: intuitionism and natural deduction, Journal of Logic and Computation, vol. 3(5) (1993), pp. 533–562, DOI: https://doi.org/10.1093/logcom/3.5.533en
dc.referencesA. Masini, L. Vigan`o, M. Volpe, Labelled natural deduction for a bundled branching temporal logic, Journal of Logic and Computation, vol. 21(6) (2011), pp. 1093–1163, DOI: https://doi.org/10.1093/logcom/exq028en
dc.referencesG. Mints, Indexed systems of sequents and cut-elimination, Journal of Philosophical Logic, vol. 26(6) (1997), pp. 671–696, DOI: https://doi.org/10.1023/A:1017948105274en
dc.referencesS. Negri, Proof theory for modal logic, Philosophy Compass, vol. 6(8) (2011), pp. 523–538, DOI: https://doi.org/10.1111/j.1747-9991.2011.00418.xen
dc.referencesA. Simpson, The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis, University of Edinburgh, UK (1993).en
dc.referencesG. Takeuti, Proof theory, 2nd ed., vol. 81 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam (1987).en
dc.referencesL. Vigan`o, Labelled non-classical logics, Kluwer Academic Publishers, Dordrecht (2000).en
dc.referencesH. Wansing, Sequent calculi for normal modal propositional logics, Journal of Logic and Computation, vol. 4(2) (1994), pp. 125–142, DOI: https://doi.org/10.1093/logcom/4.2.125en
dc.referencesH. Wansing, Predicate logics on display, Studia Logica, vol. 62(1) (1999), pp. 49–75, DOI: https://doi.org/10.1023/A:1005125717300en
dc.contributor.authorEmailMartini, Simone - simone.martini@unibo.it
dc.contributor.authorEmailMasini, Andrea - andrea.masini@univr.it
dc.contributor.authorEmailZorzi, Margherita - margherita.zorzi@univr.it
dc.identifier.doi10.18778/0138-0680.2023.22
dc.relation.volume52


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0