dc.contributor.author | Martini, Simone | |
dc.contributor.author | Masini, Andrea | |
dc.contributor.author | Zorzi, Margherita | |
dc.date.accessioned | 2024-01-04T12:38:39Z | |
dc.date.available | 2024-01-04T12:38:39Z | |
dc.date.issued | 2023-09-25 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/49159 | |
dc.description.abstract | We present a syntactical cut-elimination proof for an extended sequent calculus covering the classical modal logics in the \(\mathsf{K}\), \(\mathsf{D}\), \(\mathsf{T}\), \(\mathsf{K4}\), \(\mathsf{D4}\) and \(\mathsf{S4}\) spectrum. We design the systems uniformly since they all share the same set of rules. Different logics are obtained by “tuning” a single parameter, namely a constraint on the applicability of the cut rule and on the (left and right, respectively) rules for \(\Box\) and \(\Diamond\). Starting points for this research are 2-sequents and indexed-based calculi (sequents and tableaux). By extending and modifying existing proposals, we show how to achieve a syntactical proof of the cut-elimination theorem that is as close as possible to the one for first-order classical logic. In doing this, we implicitly show how small is the proof-theoretical distance between classical logic and the systems under consideration. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | proof theory | en |
dc.subject | sequent calculus | en |
dc.subject | cut elimination | en |
dc.subject | modal logic | en |
dc.subject | 2-sequents | en |
dc.title | Cut Elimination for Extended Sequent Calculi | en |
dc.type | Other | |
dc.page.number | 459-495 | |
dc.contributor.authorAffiliation | Martini, Simone - Universit`a di Bologna, Dipartimento di Informatica – Scienza e Ingegneria | en |
dc.contributor.authorAffiliation | Masini, Andrea - Universit`a di Verona, Dipartimento di Informatica | en |
dc.contributor.authorAffiliation | Zorzi, Margherita - Universit`a di Verona, Dipartimento di Informatica | en |
dc.identifier.eissn | 2449-836X | |
dc.references | A. Avron, The method of hypersequents in the proof theory of propositional non-classical logics, [in:] W. Hodges, M. Hyland, C. Steinhorn, J. Truss (eds.), Logic: From Foundations to Applications, Oxford Science Publications, Clarendon Press, New York (1996), pp. 1–32. | en |
dc.references | J. L. Bell, M. Machover, A course in mathematical logic, North Holland, Amsterdam (1977). | en |
dc.references | S. Burns, R. Zach, Cut-free completeness for modular hypersequent calculi for modal Logics K, T, and D, Review of Symbolic Logic, vol. 14(4) (2021), pp. 910–929, DOI: https://doi.org/10.1017/s1755020320000180 | en |
dc.references | C. Cerrato, Cut-free modal sequents for normal modal logics, Notre Dame Journal of Formal Logic, vol. 34(4) (1993), pp. 564–582, DOI: https://doi.org/10.1305/ndjfl/1093633906 | en |
dc.references | C. Cerrato, Modal tree-sequents, Mathematical Logic Quarterly, vol. 42(2) (1996), pp. 197–210, DOI: https://doi.org/10.1002/malq.19960420117 | en |
dc.references | A. Ciabattoni, R. Ramanayake, H. Wansing, Hypersequent and display calculi—a unified perspective, Studia Logica, vol. 102(6) (2014), pp. 1245–1294, DOI: https://doi.org/10.1007/s11225-014-9566-z | en |
dc.references | M. Fitting, Tableau methods of proof for modal logics, Notre Dame Journal of Formal Logic, vol. 13(2) (1972), pp. 237–247, DOI: https://doi.org/10.1305/ndjfl/1093894722 | en |
dc.references | M. Fitting, Proof methods for modal and intuitionistic logics, Springer–Verlag (1983). | en |
dc.references | M. Fitting, Prefixed tableaus and nested sequents, Annals of Pure and Applied Logic, vol. 163(3) (2012), pp. 291–313, DOI: https://doi.org/10.1016/j.apal.2011.09.004 | en |
dc.references | D. M. Gabbay, R. J. G. B. de Queiroz, Extending the Curry-Howard interpretation to linear, relevant and other resource logics, Journal of Symbolic Logic, vol. 57(4) (1992), pp. 1319–1365, DOI: https://doi.org/10.2307/2275370 | en |
dc.references | J.-Y. Girard, Proof theory and logical complexity, vol. 1, Bibliopolis, Naples (1987). | en |
dc.references | S. Guerrini, S. Martini, A. Masini, An analysis of (linear) exponentials based on extended sequents, Logic Journal of the IGPL, vol. 6(5) (1998), pp. 735–753, DOI: https://doi.org/10.1093/jigpal/6.5.735 | en |
dc.references | B. Lellmann, Linear nested sequents, 2-sequents and hypersequents, [in:] H. de Nivelle (ed.), Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2015, vol. 9323 of Lecture Notes in Computer Science, Springer (2015), pp. 135–150, DOI: https://doi.org/10.1007/978-3-319-24312-2_10 | en |
dc.references | B. Lellmann, D. Pattinson, Constructing cut free sequent systems with context restrictions based on classical or intuitionistic logic, [in:] K. Lodaya (ed.), Logic and Its Applications, 5th Indian Conference, ICLA 2013, vol. 7750 of Lecture Notes in Computer Science, Springer (2013), pp. 148–160, DOI: https://doi.org/10.1007/978-3-642-36039-8_14 | en |
dc.references | B. Lellmann, E. Pimentel, Modularisation of sequent calculi for normal and non-normal modalities, ACM Transactions on Compututational Logic, vol. 20(2) (2019), pp. 7:1–7:46, DOI: https://doi.org/10.1145/3288757 | en |
dc.references | S. Martini, A. Masini, On the fine structure of the exponential rule, [in:] J.-Y. Girard, Y. Lafont, L. Regnier (eds.), Advances in Linear Logic, Cambridge University Press (1993), pp. 197–210. | en |
dc.references | S. Martini, A. Masini, A Computational Interpretation of Modal Proofs, [in:] H. Wansing (ed.), Proof Theory of Modal Logics, Kluwer (1994), pp. 213–241. | en |
dc.references | S. Martini, A. Masini, M. Zorzi, From 2-sequents and linear nested sequents to natural eduction for normal modal logics, ACM Transactions on Compututational Logic, vol. 22(3) (2021), pp. 19:1–19:29, DOI: https://doi.org/10.1145/3461661 | en |
dc.references | A. Masini, 2-Sequent calculus: A proof theory of modalities, Annals of Pure and Applied Logic, vol. 58(3) (1992), pp. 229–246, DOI: https://doi.org/10.1016/0168-0072(92)90029-Y | en |
dc.references | A. Masini, 2-Sequent calculus: intuitionism and natural deduction, Journal of Logic and Computation, vol. 3(5) (1993), pp. 533–562, DOI: https://doi.org/10.1093/logcom/3.5.533 | en |
dc.references | A. Masini, L. Vigan`o, M. Volpe, Labelled natural deduction for a bundled branching temporal logic, Journal of Logic and Computation, vol. 21(6) (2011), pp. 1093–1163, DOI: https://doi.org/10.1093/logcom/exq028 | en |
dc.references | G. Mints, Indexed systems of sequents and cut-elimination, Journal of Philosophical Logic, vol. 26(6) (1997), pp. 671–696, DOI: https://doi.org/10.1023/A:1017948105274 | en |
dc.references | S. Negri, Proof theory for modal logic, Philosophy Compass, vol. 6(8) (2011), pp. 523–538, DOI: https://doi.org/10.1111/j.1747-9991.2011.00418.x | en |
dc.references | A. Simpson, The proof theory and semantics of intuitionistic modal logic, Ph.D. thesis, University of Edinburgh, UK (1993). | en |
dc.references | G. Takeuti, Proof theory, 2nd ed., vol. 81 of Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., Amsterdam (1987). | en |
dc.references | L. Vigan`o, Labelled non-classical logics, Kluwer Academic Publishers, Dordrecht (2000). | en |
dc.references | H. Wansing, Sequent calculi for normal modal propositional logics, Journal of Logic and Computation, vol. 4(2) (1994), pp. 125–142, DOI: https://doi.org/10.1093/logcom/4.2.125 | en |
dc.references | H. Wansing, Predicate logics on display, Studia Logica, vol. 62(1) (1999), pp. 49–75, DOI: https://doi.org/10.1023/A:1005125717300 | en |
dc.contributor.authorEmail | Martini, Simone - simone.martini@unibo.it | |
dc.contributor.authorEmail | Masini, Andrea - andrea.masini@univr.it | |
dc.contributor.authorEmail | Zorzi, Margherita - margherita.zorzi@univr.it | |
dc.identifier.doi | 10.18778/0138-0680.2023.22 | |
dc.relation.volume | 52 | |