Pokaż uproszczony rekord

dc.contributor.authorWalendziak, Andrzej
dc.date.accessioned2024-01-04T12:38:39Z
dc.date.available2024-01-04T12:38:39Z
dc.date.issued2023-09-25
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/49160
dc.description.abstractGE algebras (generalized exchange algebras), transitive GE algebras (tGE algebras, for short) and aGE algebras (that is, GE algebrasverifying the antisymmetry) are a generalization of Hilbert algebras. Here some properties and characterizations of these algebras are investigated. Connections between GE algebras and other classes of algebras of logic are studied. The implicative and positive implicative properties are discussed. It is shown that the class of positive implicative GE algebras (resp. the class of implicative aGE algebras) coincides with the class of generalized Tarski algebras (resp. the class of Tarski algebras). It is proved that for any aGE algebra the property of implicativity is equivalent to the commutative property. Moreover, several examples to illustrate the results are given. Finally, the interrelationships between some classes of implicative and positive implicative algebras are presented.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectGE algebraen
dc.subjecttGE algebraen
dc.subjectBCK algebraen
dc.subjectHilbert algebraen
dc.subject(positive) implicativityen
dc.titleOn Implicative and Positive Implicative GE Algebrasen
dc.typeOther
dc.page.number497-515
dc.contributor.authorAffiliationSiedlce University of Natural Sciences and Humanities, Faculty of Exact and Natural Sciences, Institute of Mathematicsen
dc.identifier.eissn2449-836X
dc.referencesJ. C. Abbott, Semi-boolean algebras, Matematički Vesnik, vol. 4(19) (1967), pp. 177–198.en
dc.referencesR. Bandaru, A. B. Saeid, Y. B. Jun, On GE-algebras, Bulletin of the Section of Logic, vol. 50(1) (2021), pp. 81–96, DOI: https://doi.org/10.18778/0138-0680.2020.20en
dc.referencesD. Bus˛neag, S. Rudeanu, A glimpse of deductive systems in algebra, Central European Journal of Mathematics, vol. 8(4) (2010), pp. 688–705, DOI: https://doi.org/10.2478/S11533-010-0041-4en
dc.referencesP. Cintula, C. Noguera, Logic and Implication: An Introduction to the General Algebraic Study of Non-Classical Logics, vol. 57 of Trends in Logic, Springer, Berlin (2010), DOI: https://doi.org/10.1007/978-3-030-85675-5en
dc.referencesA. Diego, Sur les algébras de Hilbert, vol. 21 of Collection de Logigue Mathématique, Serie A, Gauthier-Villars, Paris (1966).en
dc.referencesL. Henkin, An algebraic characterization of quantifilers, Fundamenta Mathematicae, vol. 37 (1950), pp. 63–74, URL: http://eudml.org/doc/213228en
dc.referencesA. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2016), pp. 353–406.en
dc.referencesA. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part II, Journal of Multiple-Valued Logic and Soft Computing, vol. 27(4) (2016), pp. 407–456.en
dc.referencesK. Iséki, An algebra related with a propositional calculus, Proceedings of the Japan Academy, vol. 42 (1966), pp. 26–29, DOI: https://doi.org/10.3792/pja/1195522171en
dc.referencesK. Iséki, S. Tanaka, An introduction to the theory of BCK-algebras, Mathematica Japonica, vol. 23 (1978), pp. 1–26.en
dc.referencesY. B. Jun, M. S. Kang, Fuzzifications of generalized Tarski filters in Tarski algebras, Computers and Mathematics with Applications, vol. 61 (2011), pp. 1–7, DOI: https://doi.org/10.1016/j.camwa.2010.10.024en
dc.referencesH. S. Kim, Y. H. Kim, On BE-algebras, Scientiae Mathematicae Japonicae, vol. 66(1) (2007), pp. 113–116, DOI: https://doi.org/10.32219/isms.66.1_113en
dc.referencesJ. Kim, Y. Kim, E. H. Roh, A note on GT-algebras, The Pure and Applied Mathematics, vol. 16(1) (2009), pp. 59–69, URL: https://koreascience.kr/article/JAKO200910335351650.pageen
dc.referencesY. Komori, The class of BCC-algebras is not a variety, Mathematica Japonica, vol. 29(3) (1984), pp. 391–394.en
dc.referencesC. A. Meredith, Formal Logics, 2nd ed., Clarendon Press, Oxford (1962).en
dc.referencesA. Monteiro, Lectures on Hilbert and Tarski algebras, 2nd ed., Insitituto de Mathemática, Universuidad Nacional del Sur, Bahía Blanca, Argentina (1960).en
dc.referencesS. Tanaka, A new class of algebras, Mathematics Seminar Notes, vol. 3 (1975), pp. 37–43.en
dc.referencesA. Walendziak, On commutative BE-algebras, Scientiae Mathematicae Japonicae, vol. 69(2) (2009), pp. 281–284, DOI: https://doi.org/10.32219/ISMS.69.2_281en
dc.referencesA. Walendziak, The implicative property for some generalizations of BCK algebras, Journal of Multiple-Valued Logic and Soft Computing, vol. 31 (2018), pp. 591–611.en
dc.referencesA. Walendziak, The property of commutativity for some generalizations of BCK algebras, Soft Computing, vol. 23 (2019), pp. 7505–7511, DOI: https://doi.org/10.1007/s00500-018-03691-9en
dc.referencesA. Walendziak, On implicative BE algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, vol. 76 (2022), pp. 45–54, DOI: https://doi.org/10.17951/a.2022.76.2.45-54en
dc.referencesH. Yutani, On a system of axioms of commutative BCK-algebras, Mathematics Seminar Notes, vol. 5 (1977), pp. 255–256.en
dc.referencesD. Zelent, Transitivity of implicative aBE algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, vol. 76 (2022), pp. 55–58, DOI: https://doi.org/10.17951/a.2022.76.2.55-58en
dc.contributor.authorEmailwalent@interia.pl
dc.identifier.doi10.18778/0138-0680.2023.21
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0