Pokaż uproszczony rekord

dc.contributor.authorConiglio, Marcelo Esteban
dc.contributor.authorde Toledo, Guilherme Vicentin
dc.date.accessioned2024-01-04T12:38:40Z
dc.date.available2024-01-04T12:38:40Z
dc.date.issued2023-08-16
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/49161
dc.description.abstractIt is well known that there is a correspondence between sets and complete, atomic Boolean algebras (\(\textit{CABA}\)s) taking a set to its power-set and, conversely, a complete, atomic Boolean algebra to its set of atomic elements. Of course, such a correspondence induces an equivalence between the opposite category of \(\textbf{Set}\) and the category of \(\textit{CABA}\)s.We modify this result by taking multialgebras over a signature \(\Sigma\), specifically those whose non-deterministic operations cannot return the empty-set, to \(\textit{CABA}\)s with their zero element removed (which we call a \(\textit{bottomless Boolean algebra}\)) equipped with a structure of \(\Sigma\)-algebra compatible with its order (that we call \(\textit{ord-algebras}\)). Conversely, an ord-algebra over \(\Sigma\) is taken to its set of atomic elements equipped with a structure of multialgebra over \(\Sigma\). This leads to an equivalence between the category of \(\Sigma\)-multialgebras and the category of ord-algebras over \(\Sigma\).The intuition, here, is that if one wishes to do so, non-determinism may be replaced by a sufficiently rich ordering of the underlying structures.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectmultialgebrasen
dc.subjectordered algebrasen
dc.subjectnon-deterministic semanticsen
dc.titleA Category of Ordered Algebras Equivalent to the Category of Multialgebrasen
dc.typeOther
dc.page.number517-550
dc.contributor.authorAffiliationConiglio, Marcelo Esteban - University of Campinas (Unicamp), Institute of Philosophy and the Humanities (IFCH) and Centre for Logic, Epistemology and the History of Science (CLE)(UNICAMP)en
dc.contributor.authorAffiliationde Toledo, Guilherme Vicentin - Bar Ilan University, Department of Computer Science, The Spiegel Mathematics & Computer Centeren
dc.identifier.eissn2449-836X
dc.referencesJ. C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 11(59)(1) (1967), pp. 3–23, URL: http://www.jstor.org/stable/43679502en
dc.referencesA. Avron, I. Lev, Canonical Propositional Gentzen-type Systems, [in:] R. Gore, A. Leitsch, T. Nipkow (eds.), Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), vol. 2083 of LNAI, Springer Verlag (2001), pp. 529–544, DOI: https://doi.org/10.1007/3-540-45744-5_45en
dc.referencesM. Baaz, O. Lahav, A. Zamansky, A Finite-valued Semantics for Canonical Labelled Calculi, J. of Automated Reasoning, vol. 51 (2013), pp. 401–430, DOI: https://doi.org/10.1007/s10817-013-9273-xen
dc.referencesI. Bošnjak, R. Madarász, On power structures, Algebra and Discrete Mathematics, vol. 2003(2) (2003), pp. 14–35.en
dc.referencesC. Brink, Power structures, Algebra Universalis, vol. 30(2) (1993), pp. 177–216, DOI: https://doi.org/10.1007/BF01196091en
dc.referencesR. H. Bruck, A Survey of Binary Systems, Springer Berlin Heidelberg (1971), DOI: https://doi.org/10.1007/978-3-662-43119-1en
dc.referencesW. A. Carnielli, M. E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, vol. 40 of Logic, Epistemology, and the Unity of Science, Springer International Publishing, Cham, Switzerland (2016), DOI: https://doi.org/10.1007/978-3-319-33205-5en
dc.referencesJ. Cı̄rulis, A first-order logic for multi-algebras, Novi Sad Journal of Mathematics, vol. 34(2) (2004), pp. 27–36.en
dc.referencesM. E. Coniglio, A. Sernadas, C. Sernadas, J. Rasga, A graph-theoretic account of logics, Journal of Logic and Computation, vol. 19 (2009), pp. 1281–1320, DOI: https://doi.org/10.1093/logcom/exp023en
dc.referencesM. E. Coniglio, G. V. Toledo, Weakly Free Multialgebras, Bulletin of the Section of Logic, vol. 51(1) (2021), pp. 109–141, URL: https://czasopisma.uni.lodz.pl/bulletin/article/view/5680en
dc.referencesM. E. Coniglio, G. V. Toledo, A Category of Ordered Algebras Equivalent to the Category of Multialgebras, arXiv 2209.08158 [math.CT] (2022), URL: https://arxiv.org/abs/2209.08158en
dc.referencesH. B. Curry, Foundations of mathematical logic, 2nd ed., Dover Books on Mathematics, Dover Publications, Mineola, NY (1977).en
dc.referencesM. Dresher, O. Ore, Theory of Multigroups, American Journal of Mathematics, vol. 60(3) (1938), pp. 705–733, DOI: https://doi.org/https://doi.org/10.2307/2371606en
dc.referencesG. Hansoul, A duality for Boolean algebras with operators, Algebra Universalis, vol. 17(1) (1983), pp. 34–49, DOI: https://doi.org/10.1007/BF01194512en
dc.referencesF. Marty, Sur une generalization de la notion de groupe, [in:] Comptes rendus du huitième Congrès des mathématiciens scandinaves tenu à Stockholm 14–18 août 1934 (1935), pp. 45–49.en
dc.referencesA. Monteiro, Cours sur les algebrés de Hilbert et de Tarski, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960).en
dc.referencesA. Monteiro, L. Iturrioz, Les algebrés de Tarski avec un nombre fini de générateurs libres, 1965. A. Monteiro: Unpublished papers I. Notas de Lógica Matemática, 40, Universidad Nacional del Sur, Instituto de Matemática, Bahía Blanca, Argentina. (1996).en
dc.referencesF. M. Nolan, Multi algebras & related structures, Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1979), URL: http://dx.doi.org/10.26021/2302en
dc.referencesC. Pelea, S. Breaz, Multialgebras and term functions over the algebra of their nonvoid subsets, Mathematica, vol. 43(2) (2001), pp. 143–149en
dc.referencesH. E. Pickett, Homomorphisms and subalgebras of multialgebras, Pacific Journal of Mathematics, vol. 21 (1967), pp. 327–342, DOI: https://doi.org/10.2140/pjm.1967.21.327en
dc.referencesU. Rivieccio, Implicative twist-structures, Algebra Universalis, vol. 71(2) (2014), pp. 155–186, DOI: https://doi.org/10.1007/s00012-014-0272-5en
dc.referencesM. H. Stone, The Theory of Representations for Boolean Algebras, Transactions of the American Mathematical Society, vol. 40 (1936), pp. 37–111, DOI: https://doi.org/10.2307/1989664en
dc.referencesG. V. Toledo, Multialgebras and non-deterministic semantics applied to paraconsistent logics, Ph.D. thesis, University of Campinas, Campinas, SP, Brazil (2022), URL: https://repositorio.unicamp.br/acervo/detalhe/1244055en
dc.referencesJ. van Oosten, Basic Category Theory, Basic Research in Computer Science. BRICS Lecture Series LS-95-1. Ultrecht University, Netherlands (1995), URL: https://www.brics.dk/LS/95/1/BRICS-LS-95-1.ps.gzen
dc.referencesM. Walicki, S. Meldal, Multialgebras, power algebras and complete calculi of identities and inclusions, [in:] E. Astesiano, G. Reggio, A. Tarlecki (eds.), Recent Trends in Data Type Specification, Springer Berlin Heidelberg, Berlin, Heidelberg (1995), pp. 453–468, DOI: https://doi.org/https://doi.org/10.1007/BFb0014444en
dc.contributor.authorEmailConiglio, Marcelo Esteban - coniglio@unicamp.br
dc.contributor.authorEmailde Toledo, Guilherme Vicentin - guivtoledo@gmail.com
dc.identifier.doi10.18778/0138-0680.2023.23
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0