dc.contributor.author | Coniglio, Marcelo Esteban | |
dc.contributor.author | de Toledo, Guilherme Vicentin | |
dc.date.accessioned | 2024-01-04T12:38:40Z | |
dc.date.available | 2024-01-04T12:38:40Z | |
dc.date.issued | 2023-08-16 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/49161 | |
dc.description.abstract | It is well known that there is a correspondence between sets and complete, atomic Boolean algebras (\(\textit{CABA}\)s) taking a set to its power-set and, conversely, a complete, atomic Boolean algebra to its set of atomic elements. Of course, such a correspondence induces an equivalence between the opposite category of \(\textbf{Set}\) and the category of \(\textit{CABA}\)s.We modify this result by taking multialgebras over a signature \(\Sigma\), specifically those whose non-deterministic operations cannot return the empty-set, to \(\textit{CABA}\)s with their zero element removed (which we call a \(\textit{bottomless Boolean algebra}\)) equipped with a structure of \(\Sigma\)-algebra compatible with its order (that we call \(\textit{ord-algebras}\)). Conversely, an ord-algebra over \(\Sigma\) is taken to its set of atomic elements equipped with a structure of multialgebra over \(\Sigma\). This leads to an equivalence between the category of \(\Sigma\)-multialgebras and the category of ord-algebras over \(\Sigma\).The intuition, here, is that if one wishes to do so, non-determinism may be replaced by a sufficiently rich ordering of the underlying structures. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | multialgebras | en |
dc.subject | ordered algebras | en |
dc.subject | non-deterministic semantics | en |
dc.title | A Category of Ordered Algebras Equivalent to the Category of Multialgebras | en |
dc.type | Other | |
dc.page.number | 517-550 | |
dc.contributor.authorAffiliation | Coniglio, Marcelo Esteban - University of Campinas (Unicamp), Institute of Philosophy and the Humanities (IFCH) and Centre for Logic, Epistemology and the History of Science (CLE)(UNICAMP) | en |
dc.contributor.authorAffiliation | de Toledo, Guilherme Vicentin - Bar Ilan University, Department of Computer Science, The Spiegel Mathematics & Computer Center | en |
dc.identifier.eissn | 2449-836X | |
dc.references | J. C. Abbott, Implicational algebras, Bulletin mathématique de la Société des Sciences Mathématiques de la République Socialiste de Roumanie, vol. 11(59)(1) (1967), pp. 3–23, URL: http://www.jstor.org/stable/43679502 | en |
dc.references | A. Avron, I. Lev, Canonical Propositional Gentzen-type Systems, [in:] R. Gore, A. Leitsch, T. Nipkow (eds.), Proceedings of the 1st International Joint Conference on Automated Reasoning (IJCAR 2001), vol. 2083 of LNAI, Springer Verlag (2001), pp. 529–544, DOI: https://doi.org/10.1007/3-540-45744-5_45 | en |
dc.references | M. Baaz, O. Lahav, A. Zamansky, A Finite-valued Semantics for Canonical Labelled Calculi, J. of Automated Reasoning, vol. 51 (2013), pp. 401–430, DOI: https://doi.org/10.1007/s10817-013-9273-x | en |
dc.references | I. Bošnjak, R. Madarász, On power structures, Algebra and Discrete Mathematics, vol. 2003(2) (2003), pp. 14–35. | en |
dc.references | C. Brink, Power structures, Algebra Universalis, vol. 30(2) (1993), pp. 177–216, DOI: https://doi.org/10.1007/BF01196091 | en |
dc.references | R. H. Bruck, A Survey of Binary Systems, Springer Berlin Heidelberg (1971), DOI: https://doi.org/10.1007/978-3-662-43119-1 | en |
dc.references | W. A. Carnielli, M. E. Coniglio, Paraconsistent Logic: Consistency, Contradiction and Negation, vol. 40 of Logic, Epistemology, and the Unity of Science, Springer International Publishing, Cham, Switzerland (2016), DOI: https://doi.org/10.1007/978-3-319-33205-5 | en |
dc.references | J. Cı̄rulis, A first-order logic for multi-algebras, Novi Sad Journal of Mathematics, vol. 34(2) (2004), pp. 27–36. | en |
dc.references | M. E. Coniglio, A. Sernadas, C. Sernadas, J. Rasga, A graph-theoretic account of logics, Journal of Logic and Computation, vol. 19 (2009), pp. 1281–1320, DOI: https://doi.org/10.1093/logcom/exp023 | en |
dc.references | M. E. Coniglio, G. V. Toledo, Weakly Free Multialgebras, Bulletin of the Section of Logic, vol. 51(1) (2021), pp. 109–141, URL: https://czasopisma.uni.lodz.pl/bulletin/article/view/5680 | en |
dc.references | M. E. Coniglio, G. V. Toledo, A Category of Ordered Algebras Equivalent to the Category of Multialgebras, arXiv 2209.08158 [math.CT] (2022), URL: https://arxiv.org/abs/2209.08158 | en |
dc.references | H. B. Curry, Foundations of mathematical logic, 2nd ed., Dover Books on Mathematics, Dover Publications, Mineola, NY (1977). | en |
dc.references | M. Dresher, O. Ore, Theory of Multigroups, American Journal of Mathematics, vol. 60(3) (1938), pp. 705–733, DOI: https://doi.org/https://doi.org/10.2307/2371606 | en |
dc.references | G. Hansoul, A duality for Boolean algebras with operators, Algebra Universalis, vol. 17(1) (1983), pp. 34–49, DOI: https://doi.org/10.1007/BF01194512 | en |
dc.references | F. Marty, Sur une generalization de la notion de groupe, [in:] Comptes rendus du huitième Congrès des mathématiciens scandinaves tenu à Stockholm 14–18 août 1934 (1935), pp. 45–49. | en |
dc.references | A. Monteiro, Cours sur les algebrés de Hilbert et de Tarski, Instituto de Matemática, Universidad Nacional del Sur, Bahía Blanca, Argentina (1960). | en |
dc.references | A. Monteiro, L. Iturrioz, Les algebrés de Tarski avec un nombre fini de générateurs libres, 1965. A. Monteiro: Unpublished papers I. Notas de Lógica Matemática, 40, Universidad Nacional del Sur, Instituto de Matemática, Bahía Blanca, Argentina. (1996). | en |
dc.references | F. M. Nolan, Multi algebras & related structures, Ph.D. thesis, University of Canterbury, Christchurch, New Zealand (1979), URL: http://dx.doi.org/10.26021/2302 | en |
dc.references | C. Pelea, S. Breaz, Multialgebras and term functions over the algebra of their nonvoid subsets, Mathematica, vol. 43(2) (2001), pp. 143–149 | en |
dc.references | H. E. Pickett, Homomorphisms and subalgebras of multialgebras, Pacific Journal of Mathematics, vol. 21 (1967), pp. 327–342, DOI: https://doi.org/10.2140/pjm.1967.21.327 | en |
dc.references | U. Rivieccio, Implicative twist-structures, Algebra Universalis, vol. 71(2) (2014), pp. 155–186, DOI: https://doi.org/10.1007/s00012-014-0272-5 | en |
dc.references | M. H. Stone, The Theory of Representations for Boolean Algebras, Transactions of the American Mathematical Society, vol. 40 (1936), pp. 37–111, DOI: https://doi.org/10.2307/1989664 | en |
dc.references | G. V. Toledo, Multialgebras and non-deterministic semantics applied to paraconsistent logics, Ph.D. thesis, University of Campinas, Campinas, SP, Brazil (2022), URL: https://repositorio.unicamp.br/acervo/detalhe/1244055 | en |
dc.references | J. van Oosten, Basic Category Theory, Basic Research in Computer Science. BRICS Lecture Series LS-95-1. Ultrecht University, Netherlands (1995), URL: https://www.brics.dk/LS/95/1/BRICS-LS-95-1.ps.gz | en |
dc.references | M. Walicki, S. Meldal, Multialgebras, power algebras and complete calculi of identities and inclusions, [in:] E. Astesiano, G. Reggio, A. Tarlecki (eds.), Recent Trends in Data Type Specification, Springer Berlin Heidelberg, Berlin, Heidelberg (1995), pp. 453–468, DOI: https://doi.org/https://doi.org/10.1007/BFb0014444 | en |
dc.contributor.authorEmail | Coniglio, Marcelo Esteban - coniglio@unicamp.br | |
dc.contributor.authorEmail | de Toledo, Guilherme Vicentin - guivtoledo@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2023.23 | |
dc.relation.volume | 52 | |