Pokaż uproszczony rekord

dc.contributor.authorAdlešić, Tin
dc.contributor.authorČačić, Vedran
dc.date.accessioned2024-01-04T12:38:40Z
dc.date.available2024-01-04T12:38:40Z
dc.date.issued2023-09-28
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/49162
dc.description.abstractIn this paper, we rigorously prove the existence of type-level ordered pairs in Quine’s New Foundations with atoms, augmented by the axiom of infinity and the axiom of choice (NFU + Inf + AC). The proof uses the cardinal squaring principle; more precisely, its instance for the (infinite) universe (VCSP), which is a theorem of NFU + Inf + AC. Therefore, we have a justification for proposing a new axiomatic extension of NFU, in order to obtain type-level ordered pairs almost from the beginning. This axiomatic extension is NFU + Inf + AC + VCSP, which is equivalent to NFU + Inf + AC, but easier to reason about.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectQuine's New Foundationsen
dc.subjectcardinal multiplicationen
dc.subjectaxiomatizationen
dc.titleThe Cardinal Squaring Principle and an Alternative Axiomatization of NFUen
dc.typeOther
dc.page.number551-581
dc.contributor.authorAffiliationAdlešić, Tin - University of Zagreb, Faculty of Teacher educationen
dc.contributor.authorAffiliationČačić, Vedran - University of Zagreb, Faculty of Scienceen
dc.identifier.eissn2449-836X
dc.referencesT. Adlešić, V. Čačić, A Modern Rigorous Approach to Stratification in NF/NFU, Logica Universalis, vol. 16(3) (2022), pp. 451–468, DOI: https://doi.org/10.1007/s11787-022-00310-yen
dc.referencesH. B. Enderton, Elements of set theory, Academic press (1977), DOI: https://doi.org/https://doi.org/10.1016/C2009-0-22079-4en
dc.referencesH. B. Enderton, A Mathematical Introduction to Logic, Academic Press (2001).en
dc.referencesM. J. Gabbay, Consistency of Quine’s New Foundations (2014), DOI: https://doi.org/10.48550/ARXIV.1406.4060en
dc.referencesM. R. Holmes, Systems of combinatory logic related to Quine’s ‘New Foundations’, Annals of Pure and Applied Logic, vol. 53(2) (1991), pp. 103–133, DOI: https://doi.org/10.1016/0168-0072(91)90052-Nen
dc.referencesM. R. Holmes, The set-theoretical program of Quine succeeded, but nobody noticed, Modern Logic, (1994).en
dc.referencesM. R. Holmes, Elementary set theory with a universal set, https://randall-holmes.github.io/head.pdf (1998).en
dc.referencesM. R. Holmes, A new pass at the NF consistency proof, https://randall-holmes.github.io/Nfproof/newattempt.pdf (2020).en
dc.referencesM. R. Holmes, Proof, Sets, and Logic, https://randall-holmes.github.io/proofsetslogic.pdf (2021).en
dc.referencesM. R. Holmes, F. E. Forster, T. Libert, Alternative Set Theories., Sets and extensions in the twentieth century, vol. 6 (2012), pp. 559–632.en
dc.referencesR. B. Jensen, On the consistency of a slight (?) modification of Quine’s New Foundations, [in:] J. Hintikka (ed.), Words and objections: Essays on the Work of W. V. Quine, Springer (1969), pp. 278–291.en
dc.referencesW. V. Quine, New foundations for mathematical logic, The American mathematical monthly, (1937), DOI: https://doi.org/10.2307/2267377en
dc.referencesJ. B. Rosser, Logic for mathematicians, Dover Publications (2008), DOI: https://doi.org/10.2307/2273431en
dc.referencesG. Wagemakers, New Foundations—A survey of Quine’s set theory, Master’s thesis, Instituut voor Tall, Logica en Informatie Publication Series, X-89-02 (1989).en
dc.contributor.authorEmailAdlešić, Tin - tin.adlesic@ufzg.hr
dc.contributor.authorEmailČačić, Vedran - veky@math.hr
dc.identifier.doi10.18778/0138-0680.2023.25
dc.relation.volume52


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0