Pokaż uproszczony rekord

dc.contributor.authorZigová, Michaela
dc.contributor.authorPetrejčíková, Eva
dc.contributor.authorMydlárová Blaščáková, Marta
dc.contributor.authorGaľová, Jana
dc.contributor.authorVašková, Hedviga
dc.contributor.authorKalafutová, Soňa
dc.contributor.authorŠlebodová, Miriama
dc.date.accessioned2024-01-10T08:09:30Z
dc.date.available2024-01-10T08:09:30Z
dc.date.issued2023-12-27
dc.identifier.issn1898-6773
dc.identifier.urihttp://hdl.handle.net/11089/49400
dc.description.abstractIntroduction: Selected anthropometric indicators, such as anthropometric measurements, indices, or ratios could be reliable predictors of future cardiometabolic risk in primary prevention, especially in young adults.Aim: This study aimed to establish cardiometabolic risk status in young Eastern Slovak adults according to anthropometric indicators.Material and methods: Indicators used in this study, such as heart rate, blood pressure, five anthropometric measurements, as well as a total of 23 anthropometric indices and ratios were selected based on the available literature. These indicators were analyzed in 162 young adult participants of both sexes with a mean age of 20.78±2.22 years. The analyzed indices and ratios were calculated by routine anthropometry and were correlated with blood pressure and heart rate in the whole research group as well as among subgroups divided according to sex, obesity and hypertension status.Results: Our results showed frequently higher values of input characteristics in males (71.88%), and statistically significant differences between sexes in 81.25% of the characteristics. The values of systolic blood pressure were above the norm in all males, and they also dominated in the obesity group. Correlation analyses conducted on all participants and in subgroups indicated a positive statistical significance in several indicators. The vast majority of the anthropometric indicators were significantly correlated with physiological indicators in almost all subgroups. Only A body shape index (ABSI) correlation coefficients did not show a significant correlation with physiological indicators in all analyzed subgroups. The correlations tended to be stronger among subgroup exhibiting potential to obesity. All analyzed indices and ratios were significantly correlated (p ≤ 0.05), predominantly with blood pressure components rather than heart rate, especially in participants with the potential for disease complications than in participants without them.Conclusion: The analyzed indicators are noninvasive and useful although they may be at different levels of association and clinical significance for various conditions. Thus some of the indicators may be standardly used in the early diagnostic process for monitoring cardiovascular health and risk stratification of patients.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesAnthropological Review;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectAnthropometryen
dc.subjectCardiometabolic complicationsen
dc.subjectAsymptomatic individualen
dc.subjectPrimary preventionen
dc.subjectYoung adulthooden
dc.titleCardiometabolic risk assessment in Eastern Slovak young adults using anthropometric indicatorsen
dc.typeArticle
dc.page.number81-97
dc.contributor.authorAffiliationZigová, Michaela - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaen
dc.contributor.authorAffiliationPetrejčíková, Eva - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaven
dc.contributor.authorAffiliationMydlárová Blaščáková, Marta - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaen
dc.contributor.authorAffiliationGaľová, Jana - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaen
dc.contributor.authorAffiliation, Hedviga Vašková - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaen
dc.contributor.authorAffiliationKalafutová, Soňa - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaen
dc.contributor.authorAffiliationŠlebodová, Miriama - Department of Biology, Faculty of Humanities and Natural Sciences, University of Prešov, Prešov, Slovakiaen
dc.identifier.eissn2083-4594
dc.referencesAbolnezhadian F, Hosseini SA, Alipour M, Zakerkish M, Cheraghian B, Ghandil P, et al. 2020. Association Metabolic Obesity Phenotypes with Cardiometabolic Index, Atherogenic Index of Plasma and Novel Anthropometric Indices: A Link of FTO-rs9939609 Polymorphism. Vasc Health Risk Manag. 16:249–256. https://doi.org/10.2147/VHRM.S251927en
dc.referencesAmirabdollahian F, Haghighatdoost F. 2018 Anthropometric Indicators of Adiposity Related to Body Weight and Body Shape as Cardiometabolic Risk Predictors in British Young Adults: Superiority of Waistto-Height Ratio. J Obes 2018:8370304. https://doi.org/10.1155/2018/8370304en
dc.referencesAntonini-Canterin F, Di Nora C, Poli S, Sparacino L, Cosei I, Ravasel A, et al. 2018. Obesity, cardiac remodeling, and metabolic profile: Validation of a new simple index beyond body mass index. J Cardiovasc Echography 28:18–25. https://doi.org/10.4103/jcecho.jcecho_63_17en
dc.referencesAshwell M, Gunn P, Gibson S. 2012. Waistto-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 13:275–286. https://doi.org/10.1111/j.1467-789X.2011.00952.xen
dc.referencesBarden AE, Huang R-Ch, Beilin LJ, Rauschert S, Tsai I-J, Oddy WH, et al. 2022. Identifying young adults at high risk of cardiometabolic disease using cluster analysis and the Framingham 30-yr risk score. Nutr Metab Cardiovasc Dis 32(2):429–35. https://doi.org/10.1016/j.numecd.2021.10.006en
dc.referencesBergman RN, Stefanovski D, Buchanan TA, Sumner AE, Reynolds JC, Sebring NG, et al. 2011. A better index of body adiposity. Obesity (Silver Spring) 19(5):1083–9. https://doi.org/10.1038/oby.2011.38en
dc.referencesBrugada J, Katritsis DG, Arbelo E, Arribas F, Bax JJ, Blomström-Lundqvist C, et al. 2020. 2019 ESC Guidelines for the management of patients with supraventricular tachycardia. The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC). Eur Heart J 41(5):655–720. https://doi.org/10.1093/eurheartj/ehz467en
dc.referencesCasadei K, Kiel J. 2022. Anthropometric Measurement. [e-book]. Treasure Island (FL): StatPearls Publishing. Available through: https://www.ncbi.nlm.nih.gov/books/NBK537315/en
dc.referencesCohen J. 1988. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge.en
dc.referencesCorbatón-Anchuelo A, Krakauer JC, Serrano- García I, Krakauer NY, Martínez-Larrad MT, Serrano-Ríos M. 2021. A Body Shape Index (ABSI) and Hip Index (HI) Adjust Waist and Hip Circumferences for Body Mass Index, But Only ABSI Predicts High Cardiovascular Risk in the Spanish Caucasian Population. Metab Syndr Relat Disord 19(6):352–357. https://doi.org/10.1089/met.2020.0129en
dc.referencesDominguez LJ, Sayón-Orea C, Gea A, Toledo E, Barbagallo M, Martínez-González MA. 2021. Increased Adiposity Appraised with CUN-BAE Is Highly Predictive of Incident Hypertension. The SUN Project. Nutrients 13(10):3309. https://doi.org/10.3390/nu13103309en
dc.referencesEgan BM, Stevens-Fabry S. 2015. Prehypertensio–prevalence, health risks, and management strategies. Nat Rev Cardiol. 12(5):289–300. https://doi.org/10.1038/nrcardio.2015.17en
dc.referencesFalhammar H, Filipsson Nyström H, Wedell A, Thorén M. 2011. Cardiovascular risk, metabolic profile, and body composition in adult males with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Eur J Endocrinol 164(2):285–93. https://doi.org/10.1530/EJE-10-0877en
dc.referencesFu S, Luo L, Ye P, Liu Y, Zhu B, Bai Y, et al. 2014. The abilities of new anthropometric indices in identifying cardiometabolic abnormalities, and influence of residence area and lifestyle on these anthropometric indices in a Chinese community-dwelling population. Clin Interv Aging. 9:179–189. https://doi.org/10.2147/CIA.S54240en
dc.referencesGómez-Ambrosi J, Silva C, Catalán V, Rodríguez A, Galofré JC, Escalada J, et al. 2012. Clinical usefulness of a new equation for estimating body fat. Diabetes Care. 35(2):383–388. https://doi.org/10.2337/dc11-1334en
dc.referencesGutema BT, Chuka A, Ayele G, Megersa ND, Bekele M, Baharu A, et al. 2020. Predictive capacity of obesity indices for high blood pressure among southern Ethiopian adult population: a WHO STEPS survey. BMC Cardiovasc Disord 20(1):421. https://doi.org/10.1186/s12872-020-01686-9en
dc.referencesHingorjo MR, Qureshi MA, Mehdi A. 2012. Neck circumference as a useful marker of obesity: a comparison with body mass index and waist circumference. J Pak Med Assoc 62(1):36–40.en
dc.referencesChaudhary S, Alam M, Singh S, Deuja S, Karmacharya P, Mondal M. 2019. Correlation of Blood Pressure with Body Mass Index, Waist Circumference and Waist by Hip Ratio. J Nepal Health Res Counc 16(41):410–413.en
dc.referencesChristakoudi S, Riboli E, Evangelou E, Tsilidis KK. 2022. Associations of body shape index (ABSI) and hip index with liver, metabolic, and inflammatory biomarkers in the UK Biobank cohort. Sci Rep. 2022;12(1):8812. https://doi.org/10.1038/s41598-022-12284-4en
dc.referencesJelena J, Baltic ZM, Milica Z, Ivanovic J, Boskovic M, Popovic M, et al. 2016. Relationship between Body Mass Index and Body Fat Percentage among Adolescents from Serbian Republic. J child Obes 1:10. https://doi.org/10.21767/2572-5394.100010en
dc.referencesKang NL. 2021. Association Between Obesity and Blood Pressure in Common Korean People. Vasc Health Risk Manag 17:371–377. https://doi.org/10.2147/VHRM.S316108en
dc.referencesLahole S, Rawekar R, Kumar S, Acharya S, Wanjari A, Gaidhane S, et al. 2022. Anthropometric indices and its association with hypertension among young medical students: A 2 year cross-sectional study. J Family Med Prim Care11(1):281– 286. https://doi.org/10.4103/jfmpc.jfmpc_1231_21en
dc.referencesMangalavalli SM, Kaliyaperumal SS, Deepika V, Teli SS, Soundariya K. 2021. Association of neck circumference with prehypertension and obesity in young paramedical students. Biomedicine 41(1):99–103. https://doi.org/10.51248/.v41i1.542en
dc.referencesMinetto MA, Pietrobelli A, Busso C, Bennett JP, Ferraris A, Shepherd JA, et al. 2022. Digital Anthropometry for Body Circumference Measurements: European Phenotypic Variations throughout the Decades. J Pers Med 12(6):906. https://doi.org/10.3390/jpm12060906en
dc.referencesMladenova S. 2019. Prevalence of anthropometric and cardiovascular risk factors among Bulgarian university students. Journal of the Anthropological Society of Serbia Niš. 54 (1-2):1–13. https://doi.org/10.5937/gads54-20049en
dc.referencesNişancı Kılınç F, Çakır B, Eşer Durmaz S, Özenir Çiler, Ekici EM. 2019. Evaluation of obesity in university students with neck circumference and determination of emotional appetite. Progr Nutr. 21(2):339–46. https://doi.org/10.23751/pn.v21i2.7094en
dc.referencesPadilla CJ, Ferreyro FA, Arnold WD. 2021. Anthropometry as a readily accessible health assessment of older adults. Exp Gerontol 153:111464. https://doi.org/10.1016/j.exger.2021.111464en
dc.referencesPeterson CM, Su H, Thomas DM, Heo M, Golnabi AH, Pietrobelli A, et al. 2017. Tri-Ponderal Mass Index vs Body Mass Index in Estimating Body Fat During Adolescence. JAMA Pediatr. 171(7):629–636. https://doi.org/10.1001/jamapediatrics.2017.0460en
dc.referencesPina A, Castelletti S. 2021. COVID-19 and Cardiovascular Disease: a Global Perspective. Curr Cardiol Rep 23(10):135. https://doi.org/10.1007/s11886-021-01566-4en
dc.referencesPiqueras P, Ballester A, Durá-Gil JV, Martinez- Hervas S, Redón J, Real JT. 2021. Anthropometric Indicators as a Tool for Diagnosis of Obesity and Other Health Risk Factors: A Literature Review. Front Psychol 12:631179. https://doi.org/10.3389/fpsyg.2021.631179en
dc.referencesRoriz AKC, Passos LCS, Oliveira CCD, Eickemberg M, Moreira PDA, Ramos, LB. 2016. Anthropometric clinical indicators in the assessment of visceral obesity: An update. Nutr. clín. diet. hosp 36(2):168–179. https://doi.org/10.12873/362carneirororizen
dc.referencesStewart A, Marfell-Jones M, Olds T, De Ridder H. 2011. International Society for Advancement of Kinanthropometry International standards for anthropometric assessment. 3rd ed. Lower Hutt, New Zealand: International Society for the Advancement of Kinanthropometry.en
dc.referencesTanrikulu MA, Agirbasli M, Berenson G. 2017. Primordial Prevention of Cardiometabolic Risk in Childhood. Adv Exp Med Biol. 956:489–496. https://doi.org/10.1007/5584_2016_172en
dc.referencesTran NTT, Blizzard CL, Luong KN, Truong NLV, Tran BQ, Otahal P, et al. 2018. The importance of waist circumference and body mass index in cross-sectional relationships with risk of cardiovascular disease in Vietnam. PLoS One 13(5):e0198202. https://doi.org/10.1371/journal.pone.0198202en
dc.referencesVan Haute M, Rondilla E 2nd, Vitug JL, Batin KD, Abrugar RE, Quitoriano F, et al. 2020. Assessment of a proposed BMI formula in predicting body fat percentage among Filipino young adults. Sci Rep 10(1):21988. https://doi.org/10.1038/s41598-020-79041-3en
dc.referencesWorld Health Organization. 2000. Obesity: Preventing and Man-aging the Global Epidemic. WHO Obesity Technical Report Series 894. Geneva, Switzerland: World Health Organization.en
dc.referencesWorld Health Organization. 2008. Waist circumference and waist-hip ratio. Report of a WHO Expert Consultation Geneva.en
dc.referencesWu Y, Li H, Tao X, Fan Y, Gao Q, Yang J. 2021. Optimised anthropometric indices as predictive screening tools for metabolic syndrome in adults: a cross-sectional study. BMJ Open 11(1):e043952. https://doi.org/10.1136/bmjopen-2020-043952en
dc.contributor.authorEmailZigová, Michaela - michaela.zigova@unipo.sk
dc.contributor.authorEmailPetrejčíková, Eva - eva.petrejcikova@unipo.sk
dc.contributor.authorEmailMydlárová Blaščáková, Marta - marta.blascakova@unipo.sk
dc.contributor.authorEmailGaľová, Jana - jana.galova@unipo.sk
dc.contributor.authorEmail, Hedviga Vašková - hedviga.vaskova@unipo.sk
dc.contributor.authorEmailKalafutová, Soňa - sona.kalafutova@unipo.sk
dc.contributor.authorEmailŠlebodová, Miriama - miriama.slebodova@smail.unipo.sk
dc.identifier.doi10.18778/1898-6773.86.4.07
dc.relation.volume86


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0