Show simple item record

dc.contributor.authorMohammadi, Hamzeh
dc.date.accessioned2024-04-12T09:57:37Z
dc.date.available2024-04-12T09:57:37Z
dc.date.issued2023-12-15
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/51685
dc.description.abstractA many-valued modal logic, called linear abelian modal logic \(\rm {\mathbf{LK(A)}}\) is introduced as an extension of the abelian modal logic \(\rm \mathbf{K(A)}\). Abelian modal logic \(\rm \mathbf{K(A)}\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \(\rm \mathbf{LK(A)}\) is axiomatized by extending \(\rm \mathbf{K(A)}\) with the modal axiom schemas \(\Box(\varphi\vee\psi)\rightarrow(\Box\varphi\vee\Box\psi)\) and \((\Box\varphi\wedge\Box\psi)\rightarrow\Box(\varphi\wedge\psi)\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectmany-valued logicen
dc.subjectmodal logicen
dc.subjectabelian logicen
dc.subjecthypersequent calculusen
dc.subjectcut-eliminationen
dc.titleLinear Abelian Modal Logicen
dc.typeOther
dc.page.number1-28
dc.contributor.authorAffiliationIsfahan University of Technology, Department of Mathematical Sciencesen
dc.identifier.eissn2449-836X
dc.referencesA. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3) (1991), pp. 225–248, DOI: https://doi.org/10.1007/BF01531058en
dc.referencesF. Baader, S. Borgwardt, R. Penaloza, Decidability and complexity of fuzzy description logics, KI-Künstliche Intelligenz, vol. 31(1) (2017), pp. 85–90, DOI: https://doi.org/10.1007/s13218-016-0459-3en
dc.referencesS. Baratella, Continuous propositional modal logic, Journal of Applied Non-Classical Logics, vol. 28(4) (2018), pp. 297–312, DOI: https://doi.org/10.1080/11663081.2018.1468677en
dc.referencesE. Casari, Comparative logics and Abelian l-groups, [in:] Studies in Logic and the Foundations of Mathematics, vol. 127, Elsevier (1989), pp. 161–190, DOI: https://doi.org/https://doi.org/10.1016/S0049-237X(08)70269-6en
dc.referencesA. Ciabattoni, G. Metcalfe, F. Montagna, Adding modalities to MTL and its extensions, [in:] Proceedings of the Linz Symposium, vol. 2005, Citeseer (2005).en
dc.referencesA. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems, vol. 161(3) (2010), pp. 369–389, DOI: https://doi.org/10.1016/j.fss.2009.09.001en
dc.referencesP. Cintula, Weakly implicative (fuzzy) logics I: Basic properties, Archive for Mathematical Logic, vol. 45(6) (2006), pp. 673–704, DOI: https://doi.org/10.1007/s00153-006-0011-5en
dc.referencesP. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, [in:] P. Cintula, P. Hajek, C. Noguera (eds.), Handbook of Mathematical Fuzzy Logic, vol. 1, College publications, London (2011), pp. 103–207.en
dc.referencesD. Diaconescu, G. Georgescu, Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408.en
dc.referencesD. Diaconescu, G. Metcalfe, L. Schnüriger, A Real-Valued Modal Logic, Logical Methods in Computer Science, vol. Volume 14, Issue 1 (2018), DOI: https://doi.org/10.23638/LMCS-14(1:10)2018en
dc.referencesT. Flaminio, L. Godo, E. Marchioni, Logics for belief functions on MV-algebras, International Journal of Approximate Reasoning, vol. 54(4) (2013), pp. 491–512, DOI: https://doi.org/10.1016/j.ijar.2012.08.006en
dc.referencesT. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, vol. 50(1) (2009), pp. 138–152, DOI: https://doi.org/10.1016/j.ijar.2008.07.006en
dc.referencesL. Godo, P. Hájek, F. Esteva, A fuzzy modal logic for belief functions, Fundamenta Informaticae, vol. 57(2-4) (2003), pp. 127–146.en
dc.referencesL. Godo, R. O. Rodrı́guez, A fuzzy modal logic for similarity reasoning, [in:] G. Chen, M. Ying, K. Cai (eds.), Fuzzy Logic and Soft Computing. The International Series on Asian Studies in Computer and Information Science, Springer, Boston, MA (1999), pp. 33–48, DOI: https://doi.org/10.1007/978-1-4615-5261-1_3en
dc.referencesP. Hájek, Making fuzzy description logic more general, Fuzzy Sets and Systems, vol. 154(1) (2005), pp. 1–15, DOI: https://doi.org/10.1016/j.fss.2005.03.005en
dc.referencesP. Hájek, D. Harmancová, R. Verbrugge, A qualitative fuzzy possibilistic logic, International Journal of Approximate Reasoning, vol. 12(1) (1995), pp. 1–19, DOI: https://doi.org/10.1016/0888-613X(94)00011-Qen
dc.referencesG. Metcalfe, N. Olivetti, D. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic (TOCL), vol. 6(3) (2005), pp. 578–613, DOI: https://doi.org/10.1145/1071596.1071600en
dc.referencesG. Metcalfe, N. Olivetti, D. M. Gabbay, Proof theory for fuzzy logics, vol. 36 of Applied Logic Series, Springer, Dordrecht (2008), DOI: https://doi.org/10.1007/978-1-4020-9409-5en
dc.referencesG. Metcalfe, O. Tuyt, A Monadic Logic of Ordered Abelian Groups, [in:] N. Olivetti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic 13, College Publications, London (2020), pp. 441–457.en
dc.referencesR. K. Meyer, J. K. Slaney, Abelian Logic (From A to Z), [in:] G. Priest, R. Routley, J. Norman (eds.), Paracoconsistent Logic, Philosophia Verlag, Munich (1989).en
dc.referencesM. Mio, R. Mardare, R. Furber, Probabilistic logics based on Riesz spaces, Logical Methods in Computer Science, vol. 16 (2020), DOI: https://doi.org/10.23638/LMCS-16(1:6)2020en
dc.referencesM. Mio, A. Simpson, Łukasiewicz μ-calculus, Fundamenta Informaticae, vol. 150(3–4) (2017), pp. 317–346, DOI: https://doi.org/10.3233/FI-2017-1472en
dc.referencesG. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900, DOI: https://doi.org/10.2307/2273495en
dc.referencesU. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research, vol. 14 (2001), pp. 137–166, DOI: https://doi.org//10.1613/jair.813en
dc.contributor.authorEmailhamzeh.mohammadi@math.iut.ac.ir
dc.identifier.doi10.18778/0138-0680.2023.30
dc.relation.volume53


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/