dc.contributor.author | Mohammadi, Hamzeh | |
dc.date.accessioned | 2024-04-12T09:57:37Z | |
dc.date.available | 2024-04-12T09:57:37Z | |
dc.date.issued | 2023-12-15 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/51685 | |
dc.description.abstract | A many-valued modal logic, called linear abelian modal logic \(\rm {\mathbf{LK(A)}}\) is introduced as an extension of the abelian modal logic \(\rm \mathbf{K(A)}\). Abelian modal logic \(\rm \mathbf{K(A)}\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \(\rm \mathbf{LK(A)}\) is axiomatized by extending \(\rm \mathbf{K(A)}\) with the modal axiom schemas \(\Box(\varphi\vee\psi)\rightarrow(\Box\varphi\vee\Box\psi)\) and \((\Box\varphi\wedge\Box\psi)\rightarrow\Box(\varphi\wedge\psi)\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | many-valued logic | en |
dc.subject | modal logic | en |
dc.subject | abelian logic | en |
dc.subject | hypersequent calculus | en |
dc.subject | cut-elimination | en |
dc.title | Linear Abelian Modal Logic | en |
dc.type | Other | |
dc.page.number | 1-28 | |
dc.contributor.authorAffiliation | Isfahan University of Technology, Department of Mathematical Sciences | en |
dc.identifier.eissn | 2449-836X | |
dc.references | A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3) (1991), pp. 225–248, DOI: https://doi.org/10.1007/BF01531058 | en |
dc.references | F. Baader, S. Borgwardt, R. Penaloza, Decidability and complexity of fuzzy description logics, KI-Künstliche Intelligenz, vol. 31(1) (2017), pp. 85–90, DOI: https://doi.org/10.1007/s13218-016-0459-3 | en |
dc.references | S. Baratella, Continuous propositional modal logic, Journal of Applied Non-Classical Logics, vol. 28(4) (2018), pp. 297–312, DOI: https://doi.org/10.1080/11663081.2018.1468677 | en |
dc.references | E. Casari, Comparative logics and Abelian l-groups, [in:] Studies in Logic and the Foundations of Mathematics, vol. 127, Elsevier (1989), pp. 161–190, DOI: https://doi.org/https://doi.org/10.1016/S0049-237X(08)70269-6 | en |
dc.references | A. Ciabattoni, G. Metcalfe, F. Montagna, Adding modalities to MTL and its extensions, [in:] Proceedings of the Linz Symposium, vol. 2005, Citeseer (2005). | en |
dc.references | A. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems, vol. 161(3) (2010), pp. 369–389, DOI: https://doi.org/10.1016/j.fss.2009.09.001 | en |
dc.references | P. Cintula, Weakly implicative (fuzzy) logics I: Basic properties, Archive for Mathematical Logic, vol. 45(6) (2006), pp. 673–704, DOI: https://doi.org/10.1007/s00153-006-0011-5 | en |
dc.references | P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, [in:] P. Cintula, P. Hajek, C. Noguera (eds.), Handbook of Mathematical Fuzzy Logic, vol. 1, College publications, London (2011), pp. 103–207. | en |
dc.references | D. Diaconescu, G. Georgescu, Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408. | en |
dc.references | D. Diaconescu, G. Metcalfe, L. Schnüriger, A Real-Valued Modal Logic, Logical Methods in Computer Science, vol. Volume 14, Issue 1 (2018), DOI: https://doi.org/10.23638/LMCS-14(1:10)2018 | en |
dc.references | T. Flaminio, L. Godo, E. Marchioni, Logics for belief functions on MV-algebras, International Journal of Approximate Reasoning, vol. 54(4) (2013), pp. 491–512, DOI: https://doi.org/10.1016/j.ijar.2012.08.006 | en |
dc.references | T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, vol. 50(1) (2009), pp. 138–152, DOI: https://doi.org/10.1016/j.ijar.2008.07.006 | en |
dc.references | L. Godo, P. Hájek, F. Esteva, A fuzzy modal logic for belief functions, Fundamenta Informaticae, vol. 57(2-4) (2003), pp. 127–146. | en |
dc.references | L. Godo, R. O. Rodrı́guez, A fuzzy modal logic for similarity reasoning, [in:] G. Chen, M. Ying, K. Cai (eds.), Fuzzy Logic and Soft Computing. The International Series on Asian Studies in Computer and Information Science, Springer, Boston, MA (1999), pp. 33–48, DOI: https://doi.org/10.1007/978-1-4615-5261-1_3 | en |
dc.references | P. Hájek, Making fuzzy description logic more general, Fuzzy Sets and Systems, vol. 154(1) (2005), pp. 1–15, DOI: https://doi.org/10.1016/j.fss.2005.03.005 | en |
dc.references | P. Hájek, D. Harmancová, R. Verbrugge, A qualitative fuzzy possibilistic logic, International Journal of Approximate Reasoning, vol. 12(1) (1995), pp. 1–19, DOI: https://doi.org/10.1016/0888-613X(94)00011-Q | en |
dc.references | G. Metcalfe, N. Olivetti, D. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic (TOCL), vol. 6(3) (2005), pp. 578–613, DOI: https://doi.org/10.1145/1071596.1071600 | en |
dc.references | G. Metcalfe, N. Olivetti, D. M. Gabbay, Proof theory for fuzzy logics, vol. 36 of Applied Logic Series, Springer, Dordrecht (2008), DOI: https://doi.org/10.1007/978-1-4020-9409-5 | en |
dc.references | G. Metcalfe, O. Tuyt, A Monadic Logic of Ordered Abelian Groups, [in:] N. Olivetti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic 13, College Publications, London (2020), pp. 441–457. | en |
dc.references | R. K. Meyer, J. K. Slaney, Abelian Logic (From A to Z), [in:] G. Priest, R. Routley, J. Norman (eds.), Paracoconsistent Logic, Philosophia Verlag, Munich (1989). | en |
dc.references | M. Mio, R. Mardare, R. Furber, Probabilistic logics based on Riesz spaces, Logical Methods in Computer Science, vol. 16 (2020), DOI: https://doi.org/10.23638/LMCS-16(1:6)2020 | en |
dc.references | M. Mio, A. Simpson, Łukasiewicz μ-calculus, Fundamenta Informaticae, vol. 150(3–4) (2017), pp. 317–346, DOI: https://doi.org/10.3233/FI-2017-1472 | en |
dc.references | G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900, DOI: https://doi.org/10.2307/2273495 | en |
dc.references | U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research, vol. 14 (2001), pp. 137–166, DOI: https://doi.org//10.1613/jair.813 | en |
dc.contributor.authorEmail | hamzeh.mohammadi@math.iut.ac.ir | |
dc.identifier.doi | 10.18778/0138-0680.2023.30 | |
dc.relation.volume | 53 | |