Pokaż uproszczony rekord

dc.contributor.authorGruszczyński, Rafał
dc.date.accessioned2024-04-12T09:57:39Z
dc.date.available2024-04-12T09:57:39Z
dc.date.issued2023-12-04
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/51687
dc.description.abstractRegions-based theories of space aim—among others—to define points in a geometrically appealing way. The most famous definition of this kind is probably due to Whitehead. However, to conclude that the objects defined are points indeed, one should show that they are points of a geometrical or a topological space constructed in a specific way. This paper intends to show how the development of mathematical tools allows showing that Whitehead’s method of extensive abstraction provides a construction of objects that are fundamental building blocks of specific topological spaces.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectBoolean contact algebrasen
dc.subjectregion-based theories of spaceen
dc.subjectpoint-free theories of spaceen
dc.subjectpointsen
dc.subjectspatial reasoningen
dc.subjectGrzegorczyken
dc.subjectWhiteheaden
dc.subjectextensive abstractionen
dc.titleMathematical Methods in Region-Based Theories of Space: The Case of Whitehead Pointsen
dc.typeOther
dc.page.number63-104
dc.contributor.authorAffiliationNicolaus Copernicus University in Toruń, Department of Logicen
dc.identifier.eissn2449-836X
dc.referencesB. Bennett, I. Düntsch, Axioms, algebras and topology, [in:] M. Aiello, I. Pratt-Hartmann, V. Benthem (eds.), Handbook of Spatial Logics, chap. 3, Springer, Dordrecht (2007), pp. 99–159, DOI: https://doi.org/10.1007/978-1-4020-5587-4_3en
dc.referencesL. Biacino, G. Gerla, Connection structures, Notre Dame Journal of Formal Logic, vol. 32(2) (1991), pp. 242–247, DOI: https://doi.org/10.1305/ndjfl/1093635748en
dc.referencesL. Biacino, G. Gerla, Connection structures: Grzegorczyk’s and Whitehead’s definitions of point, Notre Dame Journal of Formal Logic, vol. 37(3) (1996), pp. 431–439, DOI: https://doi.org/10.1305/ndjfl/1039886519en
dc.referencesB. L. Clarke, A calculus of individuals based on ‘connection’, Notre Dame Journal of Formal Logic, vol. 22(3) (1981), pp. 204–217, DOI: https://doi.org/10.1305/ndjfl/1093883455en
dc.referencesB. L. Clarke, Individuals and points, Notre Dame Journal of Formal Logic, vol. 26(1) (1985), pp. 61–67, DOI: https://doi.org/10.1305/ndjfl/1093870761en
dc.referencesS. W. Davis, Spaces with linearly ordered local bases, Topology Proceedings, vol. 3 (1978), pp. 37–51.en
dc.referencesT. de Laguna, Extensive abstraction: A suggestion, The Philosophical Review, vol. 30(2) (1921), pp. 216–218.en
dc.referencesH. de Vries, Compact spaces and compactifications, Van Gorcum and Comp. N.V., Amsterdam (1962).en
dc.referencesG. Del Piero, A class of fit regions and a universe of shapes for continuum mechanics, Journal of Elasticity, vol. 70 (2003), pp. 175–195, DOI: https://doi.org/10.1023/B:ELAS.0000005551.92536.c6en
dc.referencesG. Del Piero, A new class of fit regions, Note di Matematica, vol. 27(2) (2007), pp. 55–67.en
dc.referencesI. Düntsch, W. MacCaull, D. Vakarelov, M. Winter, Distributive contact lattices: Topological representations, The Journal of Logic and Algebraic Programming, vol. 76(1) (2008), pp. 18–34, DOI: https://doi.org/10.1016/j.jlap.2007.10.002en
dc.referencesC. Eschenbach, A Mereotopological Definition of ‘Point’, [in:] C. Eschenbach, C. Habel, B. Smith (eds.), Topological Foundations of Cognitive Science, Graduiertenkolleg Kognitionswissenschaft, Hamburg (1994), pp. 63–80, DOI: https://doi.org/10.1007/978-1-4020-5587-4_3en
dc.referencesA. Galton, The mereotopology of discrete space, [in:] C. Freksa, D. M. Mark (eds.), COSIT ’99: Proceedings of the International Conference on Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science, Springer, Berlin, Heidelberg (1999), pp. 251–266, DOI: https://doi.org/10.1007/3-540-48384-5_17en
dc.referencesA. Galton, Multidimensional mereotopology, [in:] D. Dubois, C. Welty, M.-A. Williams (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference, AAAI Press (2004), pp. 45–54.en
dc.referencesR. Gruszczyński, Niestandardowe teorie przestrzeni, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń (2016).en
dc.referencesR. Gruszczyński, S. J. Martinez, Grzegorczyk and Whitehead points: the story continues (2023), arxiv:2303.08664.en
dc.referencesR. Gruszczyński, A. Pietruszczak, A study in Grzegorczyk point-free topology. Part I: Separation and Grzegorczyk structures, Studia Logica, vol. 106 (2018), pp. 1197–1238, DOI: https://doi.org/10.1007/s11225-018-9786-8en
dc.referencesR. Gruszczyński, A. Pietruszczak, A study in Grzegorczyk point-free topology. Part II: Spaces of points, Studia Logica, vol. 107 (2019), pp. 809–843, DOI: https://doi.org/10.1007/s11225-018-9822-8en
dc.referencesR. Gruszczyński, A. Pietruszczak, Grzegorczyk points and filters in Boolean contact algebras, The Review of Symbolic Logic, vol. 16(2) (2023), pp. 509–528, DOI: https://doi.org/10.1017/S1755020321000459en
dc.referencesA. Grzegorczyk, Axiomatizability of geometry without points, Synthese, vol. 12(2–3) (1960), pp. 228–235, DOI: https://doi.org/10.1007/BF00485101en
dc.referencesT. Hahmann, CODI: A Multidimensional Theory of Mereotopology with Closure Operations, Applied Ontology, vol. 15(3) (2020), pp. 1–61, DOI: https://doi.org/10.3233/AO-200233.en
dc.referencesE. Huntington, A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion, Mathematische Annale, vol. 73 (1913), pp. 522–559, DOI: https://doi.org/10.1007/BF01455955en
dc.referencesT. Ivanova, D. Vakarelov, Distributive mereotopology: extended distributive contact lattices, Annals of Mathematics and Artificial Intelligence, vol. 77 (2016), pp. 3–41, DOI: https://doi.org/10.1007/s10472-016-9499-5en
dc.referencesP. T. Johnstone, Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1982).en
dc.referencesP. T. Johnstone, The point of pointless topology, Bulletin (New Series) of the American Mathematical Society, vol. 8(1) (1983), pp. 41–53, URL: https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-8/issue-1/The-point-of-pointless-topology/bams/1183550014.fullen
dc.referencesS. Koppelberg, Handbook of Boolean Algebras, vol. 1, Elsevier, Amsterdam (1989).en
dc.referencesT. Lando, D. Scott, A calculus of regions respecting both measure and topology, Journal of Philosophical Logic, vol. 48(5) (2019), pp. 825–850, DOI: https://doi.org/10.1007/s10992-018-9496-8en
dc.referencesT. Mormann, Continuous lattices and Whiteheadian theory of space, Logic and Logical Philosophy, vol. 6(6) (1998), pp. 35–54, DOI: https://doi.org/10.12775/LLP.1998.002en
dc.referencesJ. Picado, A. Pultr, Frames and Locales, Frontiers in Mathematics, Birkhäuser, Basel (2012), DOI: https://doi.org/10.1007/978-3-0348-0154-6en
dc.referencesJ. Picado, A. Pultr, Separation in Point-Free Topology, Birkhäuser, Basel (2021), DOI: https://doi.org/10.1007/978-3-030-53479-0en
dc.referencesA. Pietruszczak, Metamereology, Nicolaus Copernicus University Publishing House, Toruń (2018).en
dc.referencesA. Pietruszczak, Foundations of the theory of parthood, Springer, Toruń (2020), DOI: https://doi.org/10.1007/978-3-030-36533-2en
dc.referencesI. Pratt, O. Lemon, Ontologies for plane, polygonal mereotopology, Notre Dame Journal of Formal Logic, vol. 38(2) (1997), pp. 225–245, DOI: https://doi.org/10.1305/ndjfl/1039724888en
dc.referencesI. Pratt-Hartmann, Empiricism and rationalism in region-based theories of space, Fundamenta Informaticae, vol. 46(1–2) (2001), pp. 159–186en
dc.referencesK. Robering, “The whole is greater than the part.” Mereology in Euclid’s Elements, Logic and Logical Philosophy, vol. 25(3) (2016), pp. 371–409, DOI: https://doi.org/10.12775/LLP.2016.011en
dc.referencesP. Roeper, Region-based topology, Journal of Philosophical Logic, vol. 26(3) (1997), pp. 251–309, DOI: https://doi.org/10.1023/A:1017904631349en
dc.referencesH. Rüping, An example of a regular but not linear-based topological space (2016), URL: https://mathoverflow.net/q/240345 mathOverflow, version: 2016-06-03.en
dc.referencesB. Russell, Our knowledge of the external world, George Allen and Unwin LTD, London (1914).en
dc.referencesD. J. Schoop, Points in point-free mereotopology, Fundamenta Informaticae, vol. 46(1–2) (2001), pp. 129–143.en
dc.referencesE. V. Shchepin, Real functions and near-normal spaces, Fundamenta Informaticae, vol. 13 (1972), pp. 820–830, DOI: https://doi.org/10.1007/BF00968394en
dc.referencesJ. Stell, Boolean connection algebras: A new approach to the Region-Connection Calculus, Artificial Intelligence, vol. 122(1) (2000), pp. 111–136, DOI: https://doi.org/10.1016/S0004-3702(00)00045-Xen
dc.referencesM. H. Stone, The theory of representations for Boolean algebras, Transactions of the American Mathematical Society, vol. 40(1) (1936), pp. 37–111, DOI: https://doi.org/10.1090/S0002-9947-1936-1501865-8en
dc.referencesT. Tao, 245b notes 4: The Stone and Loomis-Sikorski representation theorems (optional) (2009), URL: https://terrytao.wordpress.com/2009/01/12/245b-notes-1-the-stone-and-loomis-sikorski-representation-theorems-optional/ accessed: August 01, 2010en
dc.referencesA. C. Varzi, Mereology, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (2016), URL: https://plato.stanford.edu/entries/mereology/ spring 2016 edition.en
dc.referencesA. C. Varzi, Points as higher-order constructs, [in:] G. Hellman, S. Shapiro (eds.), The History of Continua: Philosophical and Mathematical Perspectives, Oxford University Press, Oxford (2020), pp. 347–378, DOI: https://doi.org/10.1093/oso/9780198809647.003.0015en
dc.referencesA. N. Whitehead, Enquiry Concerning the Principles of Human Knowledge, Cambridge University Press, Cambridge (1919).en
dc.referencesA. N. Whitehead, The Concept of Nature, Cambridge University Press, Cambridge (1920).en
dc.referencesA. N. Whitehead, Process and Reality, MacMillan, New York (1929).en
dc.referencesM. Winter, T. Hahmann, M. Grüninger, On the algebra of regular sets, Annals of Mathematics and Artificial Intelligence, vol. 65 (2012), pp. 25–60, DOI: https://doi.org/10.1007/s10472-012-9301-2en
dc.contributor.authorEmailgruszka@umk.pl
dc.identifier.doi10.18778/0138-0680.2023.29
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0