dc.contributor.author | Gruszczyński, Rafał | |
dc.date.accessioned | 2024-04-12T09:57:39Z | |
dc.date.available | 2024-04-12T09:57:39Z | |
dc.date.issued | 2023-12-04 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/51687 | |
dc.description.abstract | Regions-based theories of space aim—among others—to define points in a geometrically appealing way. The most famous definition of this kind is probably due to Whitehead. However, to conclude that the objects defined are points indeed, one should show that they are points of a geometrical or a topological space constructed in a specific way. This paper intends to show how the development of mathematical tools allows showing that Whitehead’s method of extensive abstraction provides a construction of objects that are fundamental building blocks of specific topological spaces. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Boolean contact algebras | en |
dc.subject | region-based theories of space | en |
dc.subject | point-free theories of space | en |
dc.subject | points | en |
dc.subject | spatial reasoning | en |
dc.subject | Grzegorczyk | en |
dc.subject | Whitehead | en |
dc.subject | extensive abstraction | en |
dc.title | Mathematical Methods in Region-Based Theories of Space: The Case of Whitehead Points | en |
dc.type | Other | |
dc.page.number | 63-104 | |
dc.contributor.authorAffiliation | Nicolaus Copernicus University in Toruń, Department of Logic | en |
dc.identifier.eissn | 2449-836X | |
dc.references | B. Bennett, I. Düntsch, Axioms, algebras and topology, [in:] M. Aiello, I. Pratt-Hartmann, V. Benthem (eds.), Handbook of Spatial Logics, chap. 3, Springer, Dordrecht (2007), pp. 99–159, DOI: https://doi.org/10.1007/978-1-4020-5587-4_3 | en |
dc.references | L. Biacino, G. Gerla, Connection structures, Notre Dame Journal of Formal Logic, vol. 32(2) (1991), pp. 242–247, DOI: https://doi.org/10.1305/ndjfl/1093635748 | en |
dc.references | L. Biacino, G. Gerla, Connection structures: Grzegorczyk’s and Whitehead’s definitions of point, Notre Dame Journal of Formal Logic, vol. 37(3) (1996), pp. 431–439, DOI: https://doi.org/10.1305/ndjfl/1039886519 | en |
dc.references | B. L. Clarke, A calculus of individuals based on ‘connection’, Notre Dame Journal of Formal Logic, vol. 22(3) (1981), pp. 204–217, DOI: https://doi.org/10.1305/ndjfl/1093883455 | en |
dc.references | B. L. Clarke, Individuals and points, Notre Dame Journal of Formal Logic, vol. 26(1) (1985), pp. 61–67, DOI: https://doi.org/10.1305/ndjfl/1093870761 | en |
dc.references | S. W. Davis, Spaces with linearly ordered local bases, Topology Proceedings, vol. 3 (1978), pp. 37–51. | en |
dc.references | T. de Laguna, Extensive abstraction: A suggestion, The Philosophical Review, vol. 30(2) (1921), pp. 216–218. | en |
dc.references | H. de Vries, Compact spaces and compactifications, Van Gorcum and Comp. N.V., Amsterdam (1962). | en |
dc.references | G. Del Piero, A class of fit regions and a universe of shapes for continuum mechanics, Journal of Elasticity, vol. 70 (2003), pp. 175–195, DOI: https://doi.org/10.1023/B:ELAS.0000005551.92536.c6 | en |
dc.references | G. Del Piero, A new class of fit regions, Note di Matematica, vol. 27(2) (2007), pp. 55–67. | en |
dc.references | I. Düntsch, W. MacCaull, D. Vakarelov, M. Winter, Distributive contact lattices: Topological representations, The Journal of Logic and Algebraic Programming, vol. 76(1) (2008), pp. 18–34, DOI: https://doi.org/10.1016/j.jlap.2007.10.002 | en |
dc.references | C. Eschenbach, A Mereotopological Definition of ‘Point’, [in:] C. Eschenbach, C. Habel, B. Smith (eds.), Topological Foundations of Cognitive Science, Graduiertenkolleg Kognitionswissenschaft, Hamburg (1994), pp. 63–80, DOI: https://doi.org/10.1007/978-1-4020-5587-4_3 | en |
dc.references | A. Galton, The mereotopology of discrete space, [in:] C. Freksa, D. M. Mark (eds.), COSIT ’99: Proceedings of the International Conference on Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science, Springer, Berlin, Heidelberg (1999), pp. 251–266, DOI: https://doi.org/10.1007/3-540-48384-5_17 | en |
dc.references | A. Galton, Multidimensional mereotopology, [in:] D. Dubois, C. Welty, M.-A. Williams (eds.), Principles of Knowledge Representation and Reasoning: Proceedings of the Ninth International Conference, AAAI Press (2004), pp. 45–54. | en |
dc.references | R. Gruszczyński, Niestandardowe teorie przestrzeni, Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika, Toruń (2016). | en |
dc.references | R. Gruszczyński, S. J. Martinez, Grzegorczyk and Whitehead points: the story continues (2023), arxiv:2303.08664. | en |
dc.references | R. Gruszczyński, A. Pietruszczak, A study in Grzegorczyk point-free topology. Part I: Separation and Grzegorczyk structures, Studia Logica, vol. 106 (2018), pp. 1197–1238, DOI: https://doi.org/10.1007/s11225-018-9786-8 | en |
dc.references | R. Gruszczyński, A. Pietruszczak, A study in Grzegorczyk point-free topology. Part II: Spaces of points, Studia Logica, vol. 107 (2019), pp. 809–843, DOI: https://doi.org/10.1007/s11225-018-9822-8 | en |
dc.references | R. Gruszczyński, A. Pietruszczak, Grzegorczyk points and filters in Boolean contact algebras, The Review of Symbolic Logic, vol. 16(2) (2023), pp. 509–528, DOI: https://doi.org/10.1017/S1755020321000459 | en |
dc.references | A. Grzegorczyk, Axiomatizability of geometry without points, Synthese, vol. 12(2–3) (1960), pp. 228–235, DOI: https://doi.org/10.1007/BF00485101 | en |
dc.references | T. Hahmann, CODI: A Multidimensional Theory of Mereotopology with Closure Operations, Applied Ontology, vol. 15(3) (2020), pp. 1–61, DOI: https://doi.org/10.3233/AO-200233. | en |
dc.references | E. Huntington, A set of postulates for abstract geometry, expressed in terms of the simple relation of inclusion, Mathematische Annale, vol. 73 (1913), pp. 522–559, DOI: https://doi.org/10.1007/BF01455955 | en |
dc.references | T. Ivanova, D. Vakarelov, Distributive mereotopology: extended distributive contact lattices, Annals of Mathematics and Artificial Intelligence, vol. 77 (2016), pp. 3–41, DOI: https://doi.org/10.1007/s10472-016-9499-5 | en |
dc.references | P. T. Johnstone, Stone spaces, vol. 3 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge (1982). | en |
dc.references | P. T. Johnstone, The point of pointless topology, Bulletin (New Series) of the American Mathematical Society, vol. 8(1) (1983), pp. 41–53, URL: https://projecteuclid.org/journals/bulletin-of-the-american-mathematical-society-new-series/volume-8/issue-1/The-point-of-pointless-topology/bams/1183550014.full | en |
dc.references | S. Koppelberg, Handbook of Boolean Algebras, vol. 1, Elsevier, Amsterdam (1989). | en |
dc.references | T. Lando, D. Scott, A calculus of regions respecting both measure and topology, Journal of Philosophical Logic, vol. 48(5) (2019), pp. 825–850, DOI: https://doi.org/10.1007/s10992-018-9496-8 | en |
dc.references | T. Mormann, Continuous lattices and Whiteheadian theory of space, Logic and Logical Philosophy, vol. 6(6) (1998), pp. 35–54, DOI: https://doi.org/10.12775/LLP.1998.002 | en |
dc.references | J. Picado, A. Pultr, Frames and Locales, Frontiers in Mathematics, Birkhäuser, Basel (2012), DOI: https://doi.org/10.1007/978-3-0348-0154-6 | en |
dc.references | J. Picado, A. Pultr, Separation in Point-Free Topology, Birkhäuser, Basel (2021), DOI: https://doi.org/10.1007/978-3-030-53479-0 | en |
dc.references | A. Pietruszczak, Metamereology, Nicolaus Copernicus University Publishing House, Toruń (2018). | en |
dc.references | A. Pietruszczak, Foundations of the theory of parthood, Springer, Toruń (2020), DOI: https://doi.org/10.1007/978-3-030-36533-2 | en |
dc.references | I. Pratt, O. Lemon, Ontologies for plane, polygonal mereotopology, Notre Dame Journal of Formal Logic, vol. 38(2) (1997), pp. 225–245, DOI: https://doi.org/10.1305/ndjfl/1039724888 | en |
dc.references | I. Pratt-Hartmann, Empiricism and rationalism in region-based theories of space, Fundamenta Informaticae, vol. 46(1–2) (2001), pp. 159–186 | en |
dc.references | K. Robering, “The whole is greater than the part.” Mereology in Euclid’s Elements, Logic and Logical Philosophy, vol. 25(3) (2016), pp. 371–409, DOI: https://doi.org/10.12775/LLP.2016.011 | en |
dc.references | P. Roeper, Region-based topology, Journal of Philosophical Logic, vol. 26(3) (1997), pp. 251–309, DOI: https://doi.org/10.1023/A:1017904631349 | en |
dc.references | H. Rüping, An example of a regular but not linear-based topological space (2016), URL: https://mathoverflow.net/q/240345 mathOverflow, version: 2016-06-03. | en |
dc.references | B. Russell, Our knowledge of the external world, George Allen and Unwin LTD, London (1914). | en |
dc.references | D. J. Schoop, Points in point-free mereotopology, Fundamenta Informaticae, vol. 46(1–2) (2001), pp. 129–143. | en |
dc.references | E. V. Shchepin, Real functions and near-normal spaces, Fundamenta Informaticae, vol. 13 (1972), pp. 820–830, DOI: https://doi.org/10.1007/BF00968394 | en |
dc.references | J. Stell, Boolean connection algebras: A new approach to the Region-Connection Calculus, Artificial Intelligence, vol. 122(1) (2000), pp. 111–136, DOI: https://doi.org/10.1016/S0004-3702(00)00045-X | en |
dc.references | M. H. Stone, The theory of representations for Boolean algebras, Transactions of the American Mathematical Society, vol. 40(1) (1936), pp. 37–111, DOI: https://doi.org/10.1090/S0002-9947-1936-1501865-8 | en |
dc.references | T. Tao, 245b notes 4: The Stone and Loomis-Sikorski representation theorems (optional) (2009), URL: https://terrytao.wordpress.com/2009/01/12/245b-notes-1-the-stone-and-loomis-sikorski-representation-theorems-optional/ accessed: August 01, 2010 | en |
dc.references | A. C. Varzi, Mereology, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (2016), URL: https://plato.stanford.edu/entries/mereology/ spring 2016 edition. | en |
dc.references | A. C. Varzi, Points as higher-order constructs, [in:] G. Hellman, S. Shapiro (eds.), The History of Continua: Philosophical and Mathematical Perspectives, Oxford University Press, Oxford (2020), pp. 347–378, DOI: https://doi.org/10.1093/oso/9780198809647.003.0015 | en |
dc.references | A. N. Whitehead, Enquiry Concerning the Principles of Human Knowledge, Cambridge University Press, Cambridge (1919). | en |
dc.references | A. N. Whitehead, The Concept of Nature, Cambridge University Press, Cambridge (1920). | en |
dc.references | A. N. Whitehead, Process and Reality, MacMillan, New York (1929). | en |
dc.references | M. Winter, T. Hahmann, M. Grüninger, On the algebra of regular sets, Annals of Mathematics and Artificial Intelligence, vol. 65 (2012), pp. 25–60, DOI: https://doi.org/10.1007/s10472-012-9301-2 | en |
dc.contributor.authorEmail | gruszka@umk.pl | |
dc.identifier.doi | 10.18778/0138-0680.2023.29 | |
dc.relation.volume | 53 | |