dc.contributor.author | Rezaei, Gholam Reza | |
dc.contributor.author | Aaly Kologani, Mona | |
dc.date.accessioned | 2024-04-12T09:57:39Z | |
dc.date.available | 2024-04-12T09:57:39Z | |
dc.date.issued | 2023-11-20 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/51688 | |
dc.description.abstract | The main goal of this paper is to introduce the notion of stabilizers in \(L\)-algebras and develop stabilizer theory in \(L\)-algebras. In this paper, we introduced the notions of left and right stabilizers and investigated some related properties of them. Then, we discussed the relations among stabilizers, ideal and co-annihilators. Also, we obtained that the set of all ideals of a \(CKL\)-algebra forms a relative pseudo-complemented lattice. In addition, we proved that right stabilizers in \(CKL\)-algebra are ideals. Then by using the right stabilizers we produced a basis for a topology on \(L\)-algebra. We showed that the generated topology by this basis is Baire, connected, locally connected and separable and we investigated the other properties of this topology. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;1 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | \(L\)-algebra | en |
dc.subject | stabilizer | en |
dc.subject | ideal | en |
dc.subject | co-anihiliators | en |
dc.subject | Baire space | en |
dc.subject | topological space | en |
dc.title | Stabilizers on \(L\)-algebras | en |
dc.type | Other | |
dc.page.number | 105-124 | |
dc.contributor.authorAffiliation | Rezaei, Gholam Reza - University of Sistan and Baluchestan, Department of Mathematics, Zahedan, Iran | en |
dc.contributor.authorAffiliation | Aaly Kologani, Mona - Hatef Higher Education, Zahedan, Iran | en |
dc.identifier.eissn | 2449-836X | |
dc.references | M. Aaly Kologani, Relations between L-algebras and other logical algebras, Journal of Algebraic Hyperstructures and Logical Algebras, vol. 4(1) (2023), pp. 27–46, DOI: https://doi.org/10.52547/HATEF.JAHLA.4.1.3 | en |
dc.references | M. Aaly Kologani, Some results on L-algebars, Soft Computing, vol. 27 (2023), pp. 13765–13777, DOI: https://doi.org/10.1007/s00500-023-08965-5 | en |
dc.references | R. A. Borzooei, M. Aaly Kologani, Stabilizers topology of hoops, Algebraic Structures and Their Applications, vol. 1(1) (2014), pp. 35–48, DOI: https://doi.org/10.1090/S0002-9904-1935-06166-X | en |
dc.references | X. Y. Cheng, M. Wang, W. Wang, J. T. Wang, Stabilizers in EQ-algebras, Open Mathematics, vol. 17 (2019), pp. 998–1013, DOI: https://doi.org/10.1515/math-2019-0078 | en |
dc.references | L. C. Ciungu, Results in L-algebras, Algebra Univers, vol. 87 (2021), p. 7, DOI: https://doi.org/10.1007/s00012-020-00695-1 | en |
dc.references | M. Haveshki, M. Mohamadhasani, Stabilizer in BL-algebras and its properties, International Mathematical Forum, vol. 5(57) (2010), pp. 2809–2816, DOI: https://doi.org/10.1090/S0002-9904-1935-06166-X | en |
dc.references | B. Meng, X. L. Xin, Generalized co-annihilator of BL-algebras, Open Mathematics, vol. 13(1) (2015), pp. 639–654, DOI: https://doi.org/10.1515/math-2015-0060 | en |
dc.references | W. Rump, L-algebras, self-similarity, and ℓ-groups, Journal of Algebra, vol. 320 (2008), pp. 2328–2348, DOI: https://doi.org/10.1016/j.jalgebra.2008.05.033 | en |
dc.references | W. Rump, A general Glivenko theorem, Algebra Universalis, vol. 61 (2009), pp. 455–473, DOI: https://doi.org/10.1007/s00012-009-0018-y | en |
dc.references | W. Rump, Y. Yang, Interval in ℓ-groups as L-algebras, Algebra Universalis, vol. 67(2) (2012), pp. 121–130, DOI: https://doi.org/10.1007/s00012-012-0172-5 | en |
dc.references | W. J. Tao, A. B. Saeid, P. F. He, Stabilizers in MTL-algebras, Journal of Intelligent and Fuzzy Systems, vol. 35 (2018), pp. 717–727, DOI: https://doi.org/10.3233/JIFS-171105 | en |
dc.references | Y. L. Wu, J. Wang, Y. C. Yang, Lattice-ordered effect algebras and L-algebras, Fuzzy Sets and Systems, vol. 369 (2019), pp. 103–113, DOI: https://doi.org/10.1016/j.fss.2018.08.013 | en |
dc.references | Y. L. Wu, Y. C. Yang, Orthomodular lattices as L-algebras, Soft Computing, vol. 24 (2020), pp. 14391–14400, DOI: https://doi.org/10.1007/s00500-020-05242-7 | en |
dc.contributor.authorEmail | Rezaei, Gholam Reza - grezaei@math.usb.ac.ir | |
dc.contributor.authorEmail | Aaly Kologani, Mona - mona4011@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2023.28 | |
dc.relation.volume | 53 | |