Show simple item record

dc.contributor.authorKhamrot, Pannawit
dc.contributor.authorGaketem, Thiti
dc.date.accessioned2024-06-24T08:31:39Z
dc.date.available2024-06-24T08:31:39Z
dc.date.issued2024-04-24
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/52595
dc.description.abstractIn this paper, we defined the concept \(\mathcal{SUP}\)-hesitant fuzzy interior ideals in \(\Gamma\)-semigroups, which is generalized of hesitant fuzzy interior ideals in \(\Gamma\)-semigroups. Additionally,  we study fundamental properties of \(\mathcal{SUP}\)-hesitant fuzzy interior ideals in \(\Gamma\)-semigroups. Finally, we investigate characterized properties of those.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectSUP-hesitant fuzzy interior idealen
dc.subjecthesitant fuzzy interior idealen
dc.subjectinterval valued fuzzy interior idealen
dc.titleSUP-Hesitant Fuzzy Interior Ideals in \(\Gamma\)-Semigroupsen
dc.typeArticle
dc.page.number155-171
dc.contributor.authorAffiliationKhamrot, Pannawit - Rajamangala University of Technology Lanna of Phitsanulok, Department of Mathematics, Faculty of Science and Agricultural Technology, Thailanden
dc.contributor.authorAffiliationGaketem, Thiti - University of Phayao, Department of Mathematics, School of Science, Fuzzy Algebras and Decision-Making Problems Research Unit, Thailanden
dc.identifier.eissn2449-836X
dc.referencesM. Y. Abbasi, A. Talee, S. Khan, K. Hila, A hesitant fuzzy set approach to ideal theory in Γ-semigroups, Advance in Fuzzy Systems, vol. 2018 (Article ID 5738024) (2018), pp. 1–6, DOI: https://doi.org/10.1155/2018/5738024en
dc.referencesK. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems, vol. 20(2) (1986), pp. 87–96, DOI: https://doi.org/10.1016/S0165-0114(86)80034-3en
dc.referencesS. Bashir, A. Sarwar, Characterizations of Γ-semigroups by the properties of their interval valued T-fuzzy ideals, Annals of Fuzzy Mathematics and Informatics, vol. 9(3) (2015), pp. 441–461, URL: http://www.afmi.or.kr/articles_in_%20press/2014-10/AFMI-H-140616R3/afmi.pdfen
dc.referencesR. Chinram, On quasi-gamma-ideals in Γ-semigroups, Science Asia, vol. 32(4) (2006), pp. 351–353, DOI: https://doi.org/10.2306/scienceasia1513-1874.2006.32.351en
dc.referencesR. Chinram, A note on quasi-ideals in Γ-semirings, International Mathematical Forum, vol. 3(25–28) (2008), pp. 1253–1259, URL: https://www.m-hikari.com/ijcms-password2008/33-36-2008/chinramIJCMS33-36-2008.pdfen
dc.referencesA. Dey, T. Senapati, G. C. M. Pal, A novel approach to hesitant multifuzzy soft set based decision-making, AIMS Mathematics, vol. 5 (2020), pp. 1985–2008, DOI: https://doi.org/10.3934/math.2020132en
dc.referencesT. K. Dutta, N. C. Adhikari, On Γ-semigroup with the right and left unities, Soochow Journal of Mathematics, vol. 19(4) (1993), pp. 461–474.en
dc.referencesT. K. Dutta, N. C. Adhikari, On prime radical of Γ-semigroup, Bulletin of the Calcutta Mathematical Society, vol. 86(5) (1994), pp. 437–444.en
dc.referencesH. Harizavi, Y. B. Jun, SUP-hesitant fuzzy quasi-associative ideals of BCI-algebras, Filomat, vol. 34 (2020), pp. 4189–4197, DOI: https://doi.org/10.2298/FIL2012189Hen
dc.referencesK. Hila, On regular, semiprime and quasi-reflexive Γ-semigroup and minimal quasi-ideals, Lobachevskii Journal of Mathematics, vol. 29(3) (2008), pp. 141–152, DOI: https://doi.org/10.1134/S1995080208030050en
dc.referencesK. Hilla, Some results on prime radical in ordered Γ-semigroups, Mathematical Reports, vol. 16(66) (2014), pp. 253–270, URL: http://imar.ro/journals/Mathematical_Reports/Pdfs/2014/2/7.pdfen
dc.referencesU. Jittburus, P. Julatha, New generalizations of hesitant and interval-valued fuzzy ideals of semigroups, Advances in Mathematics: Scientific Journal, vol. 10 (2021), pp. 2199–2212, DOI: https://doi.org/10.37418/amsj.10.4.34en
dc.referencesP. Julatha, A. Iampan, SUP-Hesitant fuzzy ideals of Γ-semigroups, Journal of Mathematics and Computer Science, vol. 26 (2022), pp. 148–161, DOI: https://doi.org/10.22436/jmcs.026.02.05en
dc.referencesY. B. Jun, K. J. Lee, S.-Z. Song, Hesitant fuzzy bi-ideals in semigroups, Communications of the Korean Mathematical Society, vol. 30 (2015), pp. 143–154, DOI: https://doi.org/10.4134/CKMS.2015.30.3.143en
dc.referencesJ. Mordeson, D. S. Malik, N. Kuroki, Fuzzy semigroups, vol. 131 of Studies in Fuzziness and Soft Computing, Springer, Berlin–Heidelberg (2003), DOI: https://doi.org/10.1007/978-3-540-37125-0en
dc.referencesP. Mosrijai, A. Satirad, A. Iampan, New types of hesitant fuzzy sets on UP-algebras, Mathematica Moravica, vol. 22 (2018), pp. 29–39, DOI: https://doi.org/10.5937/MatMor1802029Men
dc.referencesG. Muhiuddin, Y. B. Jun, SUP-hesitant fuzzy subalgebras and its translations and extensions, Annals of Communications in Mathematics, vol. 2 (2019), pp. 48–56.en
dc.referencesU. Mustafa, M. A. Ozturk, Y. B. Jun, Intuitionistic fuzzy sets in Γ-semigroups, Bulletin of the Korean Mathematical Society, vol. 44(2) (2007), pp. 359–367, DOI: https://doi.org/10.4134/BKMS.2007.44.2.359en
dc.referencesA. Narayanan, T. Manikantan, Interval-valued fuzzy ideals generated by an interval-valued fuzzy subset in semigroups, Journal of Applied Mathematics and Computing, vol. 20(1–2) (2006), pp. 455–464, DOI: https://doi.org/10.1007/BF02831952en
dc.referencesM. K. Sen, N. K. Saha, On Γ-semigroup-I, Bulletin of the Calcutta Mathematical Society, vol. 78(3) (1986), pp. 180–186.en
dc.referencesM. K. Sen, N. K. Saha, Orthodox Γ-semigroups, International Journal of Mathematics and Mathematical Sciences, vol. 13(3) (1990), pp. 527–534, DOI: https://doi.org/10.1155/S016117129000076Xen
dc.referencesM. Siripitukdet, A. Iampan, On the ideal extensions in Γ-semigroups, Kyungpook Mathematical Journal, vol. 48(4) (2008), pp. 585–591, URL: https://kmj.knu.ac.kr/journal/download_pdf.php?spage=585&volume=48&number=4en
dc.referencesM. Siripitukdet, A. Iampan, On the least (ordered) semilattice congruence in ordered Γ-semigroups, Thai Journal of Mathematics, vol. 4(2) (2012), pp. 403–415, URL: https://thaijmath2.in.cmu.ac.th/index.php/thaijmath/article/view/60en
dc.referencesM. Siripitukdet, P. Julatha, The greatest subgroup of a semigroup in Γ-semigroups, Lobachevskii Journal of Mathematics, vol. 33(2) (2012), pp. 158–164, DOI: https://doi.org/10.1134/S1995080212020114en
dc.referencesV. Torra, Hesitant fuzzy sets, International Journal of Intelligent Systems, vol. 25 (2010), pp. 529–539, DOI: https://doi.org/10.1002/int.20418en
dc.referencesL. A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning, Information and Control, vol. 8 (1975), pp. 199–249, DOI: https://doi.org/10.1016/0020-0255(75)90036-5en
dc.referencesL. A. Zadeh, Fuzzy sets, Information and Control, vol. 8 (1986), pp. 338–353, DOI: https://doi.org/10.1016/S0019-9958(65)90241-Xen
dc.contributor.authorEmailKhamrot, Pannawit - pk_g@rmutl.ac.th
dc.contributor.authorEmailGaketem, Thiti - thiti.ga@up.ac.th
dc.identifier.doi10.18778/0138-0680.2024.09
dc.relation.volume53


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0