dc.contributor.author | Celani, Sergio A. | |
dc.date.accessioned | 2024-06-24T08:31:40Z | |
dc.date.available | 2024-06-24T08:31:40Z | |
dc.date.issued | 2023-11-22 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/52596 | |
dc.description.abstract | In this paper we shall define semantically some families of propositional modal logics related to the interpretability logic \(\mathbf{IL}\). We will introduce the logics \(\mathbf{BIL}\) and \(\mathbf{BIL}^{+}\) in the propositional language with a modal operator \(\square\) and a binary operator \(\Rightarrow\) such that \(\mathbf{BIL}\subseteq\mathbf{BIL}^{+}\subseteq\mathbf{IL}\). The logic \(\mathbf{BIL}\) is generated by the relational structures \(\left<X,R,N\right>\), called basic frames, where \(\left<X,R\right>\) is a Kripke frame and \(\left<X,N\right>\) is a neighborhood frame. We will prove that the logic \(\mathbf{BIL}^{+}\) is generated by the basic frames where the binary relation \(R\) is definable by the neighborhood relation \(N\) and, therefore, the neighborhood semantics is suitable to study the logic \(\mathbf{BIL}^{+}\) and its extensions. We shall also study some axiomatic extensions of \(\mathsf{\mathbf{BIL}}\) and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic BIL+ and some of its extensions are complete respect with the class of neighborhood frames. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | interpretability logic | en |
dc.subject | Kripke frames | en |
dc.subject | neighbourhood frames | en |
dc.subject | Veltman semantics | en |
dc.title | Some Logics in the Vicinity of Interpretability Logics | en |
dc.type | Article | |
dc.page.number | 173-193 | |
dc.contributor.authorAffiliation | Universidad Nacional del Centro and CONICET, Departamento de Matem´atica, Tandil, Argentina | en |
dc.identifier.eissn | 2449-836X | |
dc.references | P. Blackburn, M. de Rijke, Y. Venema, Modal Logic, no. 53 in Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: https://doi.org/10.1017/CBO9781107050884 | en |
dc.references | G. Boolos, The logic of provability, Cambridge University Press, Cambridge (1995). | en |
dc.references | S. A. Celani, Properties of saturation in monotonic neighbourhood models and some applications, Studia Logica, vol. 103(4) (2015), pp. 733–755, DOI: https://doi.org/10.1007/s11225-014-9590-z | en |
dc.references | B. F. Chellas, Modal logic: an introduction, Cambridge University Press, Cambridge (1980). | en |
dc.references | D. d. Jongh, F. Veltman, Provability logics for relative interpretability, [in:] P. P. Petkov (ed.), Mathematical logic, Springer, Boston, MA (1990), pp. 31–42, DOI: https://doi.org/10.1007/978-1-4613-0609-2_3 | en |
dc.references | J. J. Joosten, J. M. Rovira, L. Mikec, M. Vuković, An overview of Generalised Veltman Semantics (2020), arXiv:2007.04722 [math.LO]. | en |
dc.references | E. Pacuit, Introduction and Motivation, [in:] Neighborhood semantics for modal logic, Springer, Cham (2017), pp. 1–38, DOI: https://doi.org/10.1007/978-3-319-67149-9 | en |
dc.references | R. Verbrugge, Generalized Veltman frames and models (1992), manuscript. | en |
dc.references | A. Visser, Interpretability logic, [in:] P. P. Petkov (ed.), Mathematical logic, Springer US, Boston, MA (1990), pp. 175–209, DOI: https://doi.org/10.1007/978-1-4613-0609-2_13 | en |
dc.references | M. Vukovic, Some correspondences of principles in interpretability logic, Glasnik Matematicki, vol. 31 (1996), pp. 193–200. | en |
dc.contributor.authorEmail | scelani@exa.unicen.edu.ar | |
dc.identifier.doi | 10.18778/0138-0680.2023.26 | |
dc.relation.volume | 53 | |