Pokaż uproszczony rekord

dc.contributor.authorCelani, Sergio A.
dc.date.accessioned2024-06-24T08:31:40Z
dc.date.available2024-06-24T08:31:40Z
dc.date.issued2023-11-22
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/52596
dc.description.abstractIn this paper we shall define semantically some families of propositional modal logics related to the interpretability logic \(\mathbf{IL}\). We will introduce the logics \(\mathbf{BIL}\) and \(\mathbf{BIL}^{+}\) in the propositional language with a modal operator \(\square\) and a binary operator \(\Rightarrow\) such that \(\mathbf{BIL}\subseteq\mathbf{BIL}^{+}\subseteq\mathbf{IL}\). The logic \(\mathbf{BIL}\) is generated by the relational structures \(\left<X,R,N\right>\), called basic frames, where \(\left<X,R\right>\) is a Kripke frame and \(\left<X,N\right>\) is a neighborhood frame. We will prove that the logic \(\mathbf{BIL}^{+}\) is generated by the basic frames where the binary relation \(R\) is definable by the neighborhood relation \(N\) and, therefore, the neighborhood semantics is suitable to study the logic \(\mathbf{BIL}^{+}\) and its extensions. We shall also study some axiomatic extensions of \(\mathsf{\mathbf{BIL}}\) and we will prove that these extensions are sound and complete with respect to a certain classes of basic frames. Finally, we prove that the logic BIL+ and some of its extensions are complete respect with the class of neighborhood frames.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectinterpretability logicen
dc.subjectKripke framesen
dc.subjectneighbourhood framesen
dc.subjectVeltman semanticsen
dc.titleSome Logics in the Vicinity of Interpretability Logicsen
dc.typeArticle
dc.page.number173-193
dc.contributor.authorAffiliationUniversidad Nacional del Centro and CONICET, Departamento de Matem´atica, Tandil, Argentinaen
dc.identifier.eissn2449-836X
dc.referencesP. Blackburn, M. de Rijke, Y. Venema, Modal Logic, no. 53 in Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: https://doi.org/10.1017/CBO9781107050884en
dc.referencesG. Boolos, The logic of provability, Cambridge University Press, Cambridge (1995).en
dc.referencesS. A. Celani, Properties of saturation in monotonic neighbourhood models and some applications, Studia Logica, vol. 103(4) (2015), pp. 733–755, DOI: https://doi.org/10.1007/s11225-014-9590-zen
dc.referencesB. F. Chellas, Modal logic: an introduction, Cambridge University Press, Cambridge (1980).en
dc.referencesD. d. Jongh, F. Veltman, Provability logics for relative interpretability, [in:] P. P. Petkov (ed.), Mathematical logic, Springer, Boston, MA (1990), pp. 31–42, DOI: https://doi.org/10.1007/978-1-4613-0609-2_3en
dc.referencesJ. J. Joosten, J. M. Rovira, L. Mikec, M. Vuković, An overview of Generalised Veltman Semantics (2020), arXiv:2007.04722 [math.LO].en
dc.referencesE. Pacuit, Introduction and Motivation, [in:] Neighborhood semantics for modal logic, Springer, Cham (2017), pp. 1–38, DOI: https://doi.org/10.1007/978-3-319-67149-9en
dc.referencesR. Verbrugge, Generalized Veltman frames and models (1992), manuscript.en
dc.referencesA. Visser, Interpretability logic, [in:] P. P. Petkov (ed.), Mathematical logic, Springer US, Boston, MA (1990), pp. 175–209, DOI: https://doi.org/10.1007/978-1-4613-0609-2_13en
dc.referencesM. Vukovic, Some correspondences of principles in interpretability logic, Glasnik Matematicki, vol. 31 (1996), pp. 193–200.en
dc.contributor.authorEmailscelani@exa.unicen.edu.ar
dc.identifier.doi10.18778/0138-0680.2023.26
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0