dc.contributor.author | Orlandelli, Eugenio | |
dc.contributor.author | Tesi, Matteo | |
dc.date.accessioned | 2024-06-24T08:31:41Z | |
dc.date.available | 2024-06-24T08:31:41Z | |
dc.date.issued | 2024-02-09 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/52598 | |
dc.description.abstract | Decidability of monadic first-order classical logic was established by Löwenheim in 1915. The proof made use of a semantic argument and a purely syntactic proof has never been provided. In the present paper we introduce a syntactic proof of decidability of monadic first-order logic in innex normal form which exploits G3-style sequent calculi. In particular, we introduce a cut- and contraction-free calculus having a (complexity-optimal) terminating proof-search procedure. We also show that this logic can be faithfully embedded in the modal logic T. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;2 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | proof theory | en |
dc.subject | classical logic | en |
dc.subject | decidability | en |
dc.subject | Herbrand theorem | en |
dc.title | A Syntactic Proof of the Decidability of First-Order Monadic Logic | en |
dc.type | Article | |
dc.page.number | 223-244 | |
dc.contributor.authorAffiliation | Orlandelli, Eugenio - University of Bologna, Department of the Arts, Bologna, Italy | en |
dc.contributor.authorAffiliation | Tesi, Matteo - Vienna University of Technology, Faculty of Informatics, Vienna, Austria | en |
dc.identifier.eissn | 2449-836X | |
dc.references | G. S. Boolos, J. P. Burgess, R. C. Jeffrey, Computability and Logic, 5th ed., Cambridge University Press, Cambridge (2007), DOI: https://doi.org/10.1017/CBO9780511804076 | en |
dc.references | T. Bräuner, A cut-free Gentzen formulation of the modal logic S5, Logic Journal of the IGPL, vol. 8(5) (2000), pp. 629–643, DOI: https://doi.org/10.1093/jigpal/8.5.629 | en |
dc.references | A. Church, A note on the Entscheidungsproblem, The Journal of Symbolic Logic, vol. 1(1) (1936), p. 40–41, DOI: https://doi.org/10.2307/2269326 | en |
dc.references | H. R. Lewis, Complexity results for classes of quantificational formulas, Journal of Computer and System Sciences, vol. 21(3) (1980), pp. 317–353, DOI: https://doi.org/10.1016/0022-0000(80)90027-6 | en |
dc.references | C. Liang, D. Miller, Focusing and polarization in linear, intuitionistic, and classical logics, Theoretical Computer Science, vol. 410(46) (2009), pp. 4747–4768, DOI: https://doi.org/10.1016/j.tcs.2009.07.041, special issue: Abstract Interpretation and Logic Programming: In honor of professor Giorgio Levi. | en |
dc.references | L. Löwenheim, Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76 (1915), pp. 447–470, DOI: https://doi.org/10.1007/BF01458217 | en |
dc.references | W. V. Quine, On the logic of quantification, The Journal of Symbolic Logic, vol. 10(1) (1945), p. 1–12, DOI: https://doi.org/10.2307/2267200 | en |
dc.references | A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, 2nd ed., Cambridge University Press, Cambridge (2000), DOI: https://doi.org/10.1017/CBO9781139168717 | en |
dc.contributor.authorEmail | Orlandelli, Eugenio - eugenio.orlandelli@unibo.it | |
dc.contributor.authorEmail | Tesi, Matteo - tesi@logic.at | |
dc.identifier.doi | 10.18778/0138-0680.2024.03 | |
dc.relation.volume | 53 | |