Pokaż uproszczony rekord

dc.contributor.authorOrlandelli, Eugenio
dc.contributor.authorTesi, Matteo
dc.date.accessioned2024-06-24T08:31:41Z
dc.date.available2024-06-24T08:31:41Z
dc.date.issued2024-02-09
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/52598
dc.description.abstractDecidability of monadic first-order classical logic was established by Löwenheim in 1915. The proof made use of a semantic argument and a purely syntactic proof has never been provided. In the present paper we introduce a syntactic proof of decidability of monadic first-order logic in innex normal form which exploits G3-style sequent calculi. In particular, we introduce a cut- and contraction-free calculus having a (complexity-optimal) terminating proof-search procedure. We also show that this logic can be faithfully embedded in the modal logic T.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectproof theoryen
dc.subjectclassical logicen
dc.subjectdecidabilityen
dc.subjectHerbrand theoremen
dc.titleA Syntactic Proof of the Decidability of First-Order Monadic Logicen
dc.typeArticle
dc.page.number223-244
dc.contributor.authorAffiliationOrlandelli, Eugenio - University of Bologna, Department of the Arts, Bologna, Italyen
dc.contributor.authorAffiliationTesi, Matteo - Vienna University of Technology, Faculty of Informatics, Vienna, Austriaen
dc.identifier.eissn2449-836X
dc.referencesG. S. Boolos, J. P. Burgess, R. C. Jeffrey, Computability and Logic, 5th ed., Cambridge University Press, Cambridge (2007), DOI: https://doi.org/10.1017/CBO9780511804076en
dc.referencesT. Bräuner, A cut-free Gentzen formulation of the modal logic S5, Logic Journal of the IGPL, vol. 8(5) (2000), pp. 629–643, DOI: https://doi.org/10.1093/jigpal/8.5.629en
dc.referencesA. Church, A note on the Entscheidungsproblem, The Journal of Symbolic Logic, vol. 1(1) (1936), p. 40–41, DOI: https://doi.org/10.2307/2269326en
dc.referencesH. R. Lewis, Complexity results for classes of quantificational formulas, Journal of Computer and System Sciences, vol. 21(3) (1980), pp. 317–353, DOI: https://doi.org/10.1016/0022-0000(80)90027-6en
dc.referencesC. Liang, D. Miller, Focusing and polarization in linear, intuitionistic, and classical logics, Theoretical Computer Science, vol. 410(46) (2009), pp. 4747–4768, DOI: https://doi.org/10.1016/j.tcs.2009.07.041, special issue: Abstract Interpretation and Logic Programming: In honor of professor Giorgio Levi.en
dc.referencesL. Löwenheim, Über Möglichkeiten im Relativkalkül, Mathematische Annalen, vol. 76 (1915), pp. 447–470, DOI: https://doi.org/10.1007/BF01458217en
dc.referencesW. V. Quine, On the logic of quantification, The Journal of Symbolic Logic, vol. 10(1) (1945), p. 1–12, DOI: https://doi.org/10.2307/2267200en
dc.referencesA. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, 2nd ed., Cambridge University Press, Cambridge (2000), DOI: https://doi.org/10.1017/CBO9781139168717en
dc.contributor.authorEmailOrlandelli, Eugenio - eugenio.orlandelli@unibo.it
dc.contributor.authorEmailTesi, Matteo - tesi@logic.at
dc.identifier.doi10.18778/0138-0680.2024.03
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0