Pokaż uproszczony rekord

dc.contributor.authorPłaczek, Paweł
dc.date.accessioned2024-06-24T08:31:41Z
dc.date.available2024-06-24T08:31:41Z
dc.date.issued2024-04-24
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/52599
dc.description.abstractLinear Logic is a versatile framework with diverse applications in computer science and mathematics. One intriguing fragment of Linear Logic is Multiplicative-Additive Linear Logic (MALL), which forms the exponential-free component of the larger framework. Modifying MALL, researchers have explored weaker logics such as Noncommutative MALL (Bilinear Logic, BL) and Cyclic MALL (CyMALL) to investigate variations in commutativity. In this paper, we focus on Cyclic Nonassociative Bilinear Logic (CyNBL), a variant that combines noncommutativity and nonassociativity. We introduce a sequent system for CyNBL, which includes an auxiliary system for incorporating nonlogical axioms. Notably, we establish the cut elimination property for CyNBL. Moreover, we establish the strong conservativeness of CyNBL over Full Nonassociative Lambek Calculus (FNL) without additive constants. The paper highlights that all proofs are constructed using syntactic methods, ensuring their constructive nature. We provide insights into constructing cut-free proofs and establishing a logical relationship between CyNBL and FNL.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;2en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectlinear logicen
dc.subjectLambek calculusen
dc.subjectnonassociative logicsen
dc.subjectnoncommutative logicsen
dc.subjectsubstructural logicsen
dc.subjectconsequence relationen
dc.subjectnonlogical axiomsen
dc.subjectconservativenessen
dc.titleSequent Systems for Consequence Relations of Cyclic Linear Logicsen
dc.typeArticle
dc.page.number245-274
dc.contributor.authorAffiliationWSB Merito University in Poznań, Faculty of Finance and Banking, Poznań, Polanden
dc.identifier.eissn2449-836X
dc.referencesV. M. Abrusci, Phase semantics and sequent calculus for pure noncommutative classical linear propositional logic, The Journal of Symbolic Logic, vol. 56(4) (1991), pp. 1403–1451, DOI: https://doi.org/10.2307/2275485en
dc.referencesV. M. Abrusci, Classical Conservative Extensions of Lambek Calculus, Studia Logica, vol. 71(3) (2002), pp. 277–314, DOI: https://doi.org/10.1023/A:1020560613199en
dc.referencesW. Buszkowski, Lambek calculus with nonlogical axioms, CSLI Lecture Notes, [in:] C. Casadio, P. J. Scott, R. A. G. Seely (eds.), Language and Grammar. Studies in Mathematical Linguistics and Natural Language, CSLI Publications, Stanford, CA (2005), pp. 77–93.en
dc.referencesW. Buszkowski, On classical nonassociative Lambek calculus, [in:] M. Amblard, P. de Groote, S. Pogodalla, C. Retoré (eds.), Logical Aspects of Computational Linguistics, vol. 10054 of Lecture Notes in Computer Science, Springer, Berlin–Heidelberg (2016), pp. 68–84, DOI: https://doi.org/10.1007/978-3-662-53826-5_5en
dc.referencesW. Buszkowski, Involutive nonassociative Lambek calculus: Sequent systems and complexity, Bulletin of the Section of Logic, vol. 46(1/2) (2017), DOI: https://doi.org/10.18778/0138-0680.46.1.2.07en
dc.referencesK. Chvalovský, Undecidability of consequence relation in full non-associative Lambek calculus, The Journal of Symbolic Logic, (2015), pp. 567–586, DOI: https://doi.org/10.1017/jsl.2014.39en
dc.referencesJ.-Y. Girard, Linear logic, Theoretical Computer Science, vol. 50(1) (1987), pp. 1–101, DOI: https://doi.org/10.1016/0304-3975(87)90045-4en
dc.referencesJ. Lambek, Cut elimination for classical bilinear logic, Fundamenta Informaticae, vol. 22(1–2) (1995), pp. 53–67, DOI: https://doi.org/10.3233/FI-1995-22123en
dc.referencesZ. Lin, Modal nonassociative Lambek calculus with assumptions: complexity and context-freeness, [in:] Language and Automata Theory and Applications: 4th International Conference, LATA 2010, Trier, Germany, May 24–28, 2010. Proceedings 4, vol. 6031 of Lecture Notes in Computer Science, Springer (2010), pp. 414–425, DOI: https://doi.org/10.1007/978-3-642-13089-2_35en
dc.referencesP. Plączek, One-Sided Sequent Systems for Nonassociative Bilinear Logic: Cut Elimination and Complexity, Bulletin of the Section of Logic, vol. 50(1) (2020), pp. 55–80, DOI: https://doi.org/10.18778/0138-0680.2020.25en
dc.referencesP. Plączek, Extensions of Lambek calculi: Sequent systems, conservativeness and computational complexity, Ph.D. thesis, Adam Mickiewicz University, Poznań (2021).en
dc.referencesD. N. Yetter, Quantales and (Noncommutative) Linear Logic, The Journal of Symbolic Logic, vol. 55(1) (1990), pp. 41–64, DOI: https://doi.org/10.2307/2274953en
dc.contributor.authorEmailpawel.placzek@poznan.merito.pl
dc.identifier.doi10.18778/0138-0680.2024.06
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0