dc.contributor.author | Bystrov, Victor | |
dc.contributor.author | Naboka‑Krell, Viktoriia | |
dc.contributor.author | Staszewska‑Bystrova, Anna | |
dc.contributor.author | Winker, Peter | |
dc.date.accessioned | 2024-07-01T08:27:39Z | |
dc.date.available | 2024-07-01T08:27:39Z | |
dc.date.issued | 2024-06-28 | |
dc.identifier.issn | 1508-2008 | |
dc.identifier.uri | http://hdl.handle.net/11089/52714 | |
dc.description.abstract | The popularity of econometric analyses that include variables obtained from text mining is growing rapidly. A frequently applied approach is to identify topics from large corpora, which makes it possible to determine trends that reflect the changing relevance of topics over time. We address the question of whether such topic trends are linked to quantitative economic indicators typically used for analysing the objects described by a topic. The analysis is based on academic economic articles from Poland and Germany from 1984 to 2020. There is a specific focus on whether relationships between topic trends and indicators are similar across national economies. The connection between topic trends and indicators is analysed using vector autoregressive models and Granger causality tests. | en |
dc.description.abstract | W ostatnim czasie obserwować można gwałtowny wzrost popularności metod analizy ekonomicznej wykorzystującej zmienne pozyskane z tekstów. Jednym z najczęściej stosowanych podejść jest modelowanie tematów, które pozwala na oszacowanie, jak waga poszczególnych tematów zmieniała się w czasie. Celem artykułu jest zbadanie, czy mierzona za pomocą wag popularność tematów była powiązana z wybranymi zmiennymi ekonomicznymi. W badaniu wykorzystano artykuły naukowe z obszaru ekonomii, opublikowane w Polsce i Niemczech w latach 1984–2020. Jednym z celów analizy było stwierdzenie, czy zależności pomiędzy popularnością wybranych tematów w Polsce i w Niemczech i powiązanymi z nimi wskaźnikami ekonomicznymi były podobne. Badanie przeprowadzono za pomocą modeli wektorowej autoregresji i testów przyczynowości Grangera. | pl |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Comparative Economic Research. Central and Eastern Europe;2 | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | topic modelling | en |
dc.subject | text analysis | en |
dc.subject | latent Dirichlet allocation | en |
dc.subject | Granger causality | en |
dc.subject | topic trends | en |
dc.subject | modelowanie tematów | pl |
dc.subject | analiza tekstu | pl |
dc.subject | alokacja zmiennej ukrytej Dirichleta | pl |
dc.subject | przyczynowość w sensie Grangera | pl |
dc.subject | popularność tematów | pl |
dc.title | Comparing Links between Topic Trends and Economic Indicators in the German and Polish Academic Literature | en |
dc.title.alternative | Porównanie zależności pomiędzy popularnością tematów artykułów naukowych i zmiennymi ekonomicznymi dla Polski i Niemiec | pl |
dc.type | Article | |
dc.page.number | 7-28 | |
dc.contributor.authorAffiliation | Bystrov, Victor - University of Lodz, Lodz, Poland | en |
dc.contributor.authorAffiliation | Naboka‑Krell, Viktoriia - Justus Liebig University of Giessen, Giessen, Germany | en |
dc.contributor.authorAffiliation | Staszewska‑Bystrova, Anna - University of Lodz, Lodz, Poland | en |
dc.contributor.authorAffiliation | Winker, Peter - Justus Liebig University of Giessen, Giessen, Germany | en |
dc.identifier.eissn | 2082-6737 | |
dc.references | Baker, S.R., Bloom, N., Davis, S.J. (2016), Measuring Economic Policy Uncertainty, “The Quarterly Journal of Economics”, 131 (4), pp. 1593–1636, https://doi.org/10.1093/qje/qjw024 | en |
dc.references | Bergeaud, A., Potiron, Y., Raimbault, J. (2017), Classifying patents based on their semantic content, “PLOS ONE”, 12 (4), pp. 1–22, https://doi.org/10.1371/journal.pone.0176310 | en |
dc.references | Blei, D.M., Ng, A.Y., Jordan, M.I. (2003), Latent Dirichlet allocation, “Journal of Machine Learning Research”, 3, pp. 993–1022. | en |
dc.references | Bystrov, V., Naboka, V., Staszewska Bystrova, A., Winker, P. (2022), Cross Corpora Comparisons of Topics and Topic Trends, “Journal of Economics and Statistics”, 242 (4), pp. 433–469, https://doi.org/10.1515/jbnst-2022-0024 | en |
dc.references | Dybowski, T.P., Adämmer, P. (2018), The economic effects of U.S. presidential tax communication: Evidence from a correlated topic model, “European Journal of Political Economy”, 55, pp. 511–525, https://doi.org/10.1016/j.ejpoleco.2018.05.001 | en |
dc.references | Ellingsen, J., Larsen, V.H., Thorsrud, L.A. (2022), News media versus FRED MD for macroeconomic forecasting, “Journal of Applied Econometrics”, 37 (1), pp. 63–81, https://doi.org/10.1002/jae.2859 | en |
dc.references | Hansen, S., McMahon, M., Prat, A. (2017), Transparency and Deliberation Within the FOMC: A Computational Linguistics Approach, “The Quarterly Journal of Economics”, 133 (2), pp. 801–870, https://doi.org/10.1093/qje/qjx045 | en |
dc.references | Huang, A.H., Lehavy, R., Zang, A.Y., Zheng, R. (2018), Analyst Information Discovery and Interpretation Roles: A Topic Modeling Approach, “Management Science”, 64 (6), pp. 2833–2855, https://doi.org/10.1287/mnsc.2017.2751 | en |
dc.references | Kilian, L. (2009), Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market, “American Economic Review”, 99 (3), pp. 1053–1069, https://doi.org/10.1257/aer.99.3.1053 | en |
dc.references | Kilian, L., Lütkepohl, H. (2017), Structural Vector Autoregressive Analysis, “Themes in Modern Econometrics”, Cambridge University Press, Cambridge. | en |
dc.references | Larsen, V.H., Thorsrud, L.A. (2022), Asset returns, news topics, and media effects, “The Scandinavian Journal of Economics”, 124 (3), pp. 838–868, https://doi.org/10.1111/sjoe.12469 | en |
dc.references | Latifi, A., Naboka Krell, V., Tillmann, P., Winker, P. (2023), Fiscal policy in the Bundestag: Textual analysis and macroeconomic effects, MAGKS papers on economics, Philipps Universität Marburg, Faculty of Business Administration and Economics, Department of Economics, Marburg. | en |
dc.references | Lenz, D., Winker, P. (2020), Measuring the diffusion of innovations with paragraph vector topic models, “PLOS ONE”, 15 (1), pp. 1–18, https://doi.org/10.1371/journal.pone.0226685 | en |
dc.references | Lüdering, J., Winker, P. (2016), Forward or Backward Looking? The Economic Discourse and the Observed Reality, “Journal of Economics and Statistics”, 236 (4), pp. 483–515, https://doi.org/10.1515/jbnst-2015-1026 | en |
dc.references | Savin, I., Ott, I., Konop, C. (2022), Tracing the evolution of service robotics: Insights from a topic modeling approach, “Technological Forecasting & Social Change”, 174, 121280, https://doi.org/10.1016/j.techfore.2021.121280 | en |
dc.references | Thorsrud, L.A. (2020), Words are the new numbers: A newsy coincident index of the business cycle, “Journal of Business & Economic Statistics”, 38 (2), pp. 393–409, https://doi.org/10.1080/07350015.2018.1506344 | en |
dc.contributor.authorEmail | Bystrov, Victor - victor.bystrov@uni.lodz.pl | |
dc.contributor.authorEmail | Naboka‑Krell, Viktoriia - viktoriia.naboka@wirtschaft.uni‑giessen.de | |
dc.contributor.authorEmail | Staszewska‑Bystrova, Anna - anna.bystrova@uni.lodz.pl | |
dc.contributor.authorEmail | Winker, Peter - peter.winker@wirtschaft.uni‑giessen.de | |
dc.identifier.doi | 10.18778/1508-2008.27.10 | |
dc.relation.volume | 27 | |