Show simple item record

dc.contributor.authorWielgus, Małgorzata
dc.contributor.authorZaniewicz, Nikola
dc.date.accessioned2024-09-24T10:27:57Z
dc.date.available2024-09-24T10:27:57Z
dc.date.issued2024-09-18
dc.identifier.issn1730-2366
dc.identifier.urihttp://hdl.handle.net/11089/53224
dc.description.abstractPolyphenols are a large group of organic compounds present in plants, where they play various roles pivotal to their proper physiological functioning. Polyphenols are ubiquitous in many dietary sources such as fruits, vegetables, beverages, seeds, and honeys. Diet plays a crucial role in sustaining overall well-being of the organism and preventing diseases, including cancer. Despite broad spectrum of health promoting activity of polyphenols, such as antioxidant, anti-inflammatory and antimicrobial, many of them are also potent anti-cancer compounds. In this review we focused on presentation of three polyphenols such as quercetin, curcumin, and kaempferol. We discussed recent studies concerning their beneficial impact on human health and potential as anticancer agents.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Biologica et Oecologicaen
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectpolyphenolsen
dc.subjectanticanceren
dc.subjectanti-inflammatoryen
dc.subjectneuroprotectionen
dc.titleSelected biological properties of quercetin, curcumin, and kaempferolen
dc.typeArticle
dc.page.number48-65
dc.contributor.authorAffiliationWielgus, Małgorzata - University of Lodz, Faculty of Biology and Environmental Protection, Biochemical Section of the Student Biologists’ Scientific Cluben
dc.contributor.authorAffiliationZaniewicz, Nikola - University of Lodz, Faculty of Biology and Environmental Protection, Biochemical Section of the Student Biologists’ Scientific Cluben
dc.identifier.eissn2083-8484
dc.referencesAggarwal, B. B., Harikumar, K. B. 2009. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune, and neoplastic diseases. The International Journal of Biochemistry Cell Biology, 41(1): 40–59.en
dc.referencesAl-Nour, M.Y., Ibrahim, M.M., Elsaman, T. 2019. Ellagic Acid, Kaempferol, and Quercetin from Acacia nilotica: Promising Combined Drug With Multiple Mechanisms of Action. Current Pharmacology Reports, 5(4): 255–280.en
dc.referencesAlsharairi, N.A. 2023. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. International Journal of Molecular Sciences, 24(20): 15208.en
dc.referencesAnand David, A.V., Arulmoli, R., Parasuraman, S. 2016. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews, 10(20): 84–89.en
dc.referencesAnand, A.V., Balamuralikrishnan, B., Kaviya, M., Bharathi, K., Parithathvi, A., Arun, M., Senthilkumar, N., Velayuthaprabhu, S., Saradhadevi, M., Al-Dhabi, NA., Arasu, M.V., Yatoo, M.I., Tiwari, R., Dhama, K. 2021. Medicinal Plants, Phytochemicals, and Herbs to Combat Viral Pathogens Including SARS-CoV-2. Molecules (Basel, Switzerland), 26(6): 1775.en
dc.referencesArabyan, E., Hakobyan, A., Hakobyan, T., Grigoryan, R., Izmailyan, R., Avetisyan, A., Karalyan, Z., Jackman, J.A., Ferreira, F., Elrod, C.C., Zakaryan, H. 2021. Flavonoid Library Screening Reveals Kaempferol as a Potential Antiviral Agent Against African Swine Fever Virus. Frontiers in Microbiology, 12: 736780.en
dc.referencesBagheri, H., Ghasemi, F., Barreto, G.E., Rafiee, R., Sathyapalan, T., Sahebkar, A. 2020. Effects of curcumin on mitochondria in neurodegenerative diseases. BioFactors (Oxford, England), 46(1): 5–20.en
dc.referencesBai N., He K., Roller M., Lai C.S., Shao X., Pan M.H., Ho C.T. 2010. Flavonoids and phenolic compounds from Rosmarinus officinalis. Journal of Agricultural and Food Chemistry, 58(9): 5363–5367.en
dc.referencesBalkwill, F., Mantovani, A. 2001. Inflammation and cancer: back to Virchow?. Lancet (London, England), 357(9255): 539–545.en
dc.referencesBendotti C., Marino M., Cheroni C., Fontana E., Crippa V. , Poletti A., De Biasi S. 2012. Dysfunction of constitutive and inducible ubiquitin-proteasome system in amyotrophic lateral sclerosis: implication for protein aggregation and immune response. Progress in Neurobiology, 97: 101–126.en
dc.referencesBenyahia, S., Benayache, S., Benayache, F., Quintana, J., López, M., León, F., Hernández, J. C., Estévez, F., Bermejo, J. 2004. Isolation from Eucalyptus occidentalis and identification of a new kaempferol derivative that induces apoptosis in human myeloid leukemia cells. Journal of Natural Products, 67(4): 527–531.en
dc.referencesBk, B., Skuntz, S., Prochazkova, M., Kesavapany, S., Amin, N.D., Shukla, V., Grant P., Kulkarni A.B., Pant H.C. 2019. Overexpression of the Cdk5 inhibitory peptide in motor neurons rescue of amyotrophic lateral sclerosis phenotype in a mouse model. Human Molecular Genetics, 28(19): 3175–3187.en
dc.referencesBrusselmans, K., Vrolix, R., Verhoeven, G., Swinnen, J.V, 2005. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. The Journal of Biological Chemistry, 280(7): 5636–5645.en
dc.referencesBureau, G., Longpré, F., Martinoli, M.G. 2008. Resveratrol and quercetin, two natural polyphenols, reduce apoptotic neuronal cell death induced by neuroinflammation. Journal of Neuroscience Research, 86(2): 403–410.en
dc.referencesCalderón-Montaño, J.M., Burgos-Morón, E., Pérez-Guerrero, C., López-Lázaro, M. 2011. A review on the dietary flavonoid kaempferol. Mini Reviews in Medicinal Chemistry, 11(4): 298–344.en
dc.referencesCarullo, G., Cappello, A. R., Frattaruolo, L., Badolato, M., Armentano, B., Aiello, F. 2017. Quercetin and derivatives: useful tools in inflammation and pain management. Future Medicinal Chemistry, 9(1): 79–93.en
dc.referencesChang, S., Li, X., Zheng, Y., Shi, H., Zhang, D., Jing, B., Chen, Z., Qian, G., Zhao, G. 2022. Kaempferol exerts a neuroprotective effect to reduce neuropathic pain through TLR4/NF-ĸB signaling pathway. Phytotherapy Research: PTR, 36(4): 1678–1691.en
dc.referencesChen H.J., Lin C.M., Lee C.Y., Shih N.C., Peng S.F., Tsuzuki M., Amagaya S., Huang W.W., Yang J.S. 2013. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology Reports, 30:925–932.en
dc.referencesChen J, Huang Z, Cao X, Zou T, You J, Guan W. 2022. Plant-derived polyphenols in sow nutrition: An update. Animal Nutrition, 12: 96–107.en
dc.referencesChen, H.J., Lin, C.M., Lee, C.Y., Shih, N.C., Peng, S.F., Tsuzuki, M., Amagaya, S., Huang, W.W., Yang, J.S. 2013. Kaempferol suppresses cell metastasis via inhibition of the ERK-p38-JNK and AP-1 signaling pathways in U-2 OS human osteosarcoma cells. Oncology Reports, 30(2): 925–932.en
dc.referencesCheng, S.C., Huang, W.C., Pang, J.H., Wu, Y.H., Cheng, C.Y.2019. Quercetin Inhibits the Production of IL-1β-Induced Inflammatory Cytokines and Chemokines in ARPE-19 Cells via the MAPK and NF-κB Signaling Pathways. International Journal of Molecular Sciences, 20(12): 2957.en
dc.referencesChirumbolo S. 2010. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflammation Allergy Drug Targets, 9(4): 263–285.en
dc.referencesColović M.B., Krstić D.Z., Lazarević-Pašti T.D., Bondžić A.M., Vasić V.M. 2013. Acetylcholinesterase inhibitors: pharmacology and toxicology. Current Neuropharmacology, 11(3): 315–335.en
dc.referencesConforti, F., Menichini, F., Rigano, D., Senatore, F. 2009. Antiproliferative activity on human cancer cell lines after treatment with polyphenolic compounds isolated from Iris pseudopumila flowers and rhizomes. Zeitschrift für Naturforschung C, 64: 490–494.en
dc.referencesCruz-Gregorio, A., Aranda-Rivera, A.K. 2023. Quercetin and Ferroptosis. Life (Basel, Switzerland), 13(8): 1730.en
dc.referencesD’Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., Masella, R. 2010. Bioavailability of the polyphenols: status and controversies. International Journal of Molecular Sciences, 11(4): 1321–1342.en
dc.referencesDi Lorenzo, C., Colombo, F., Biella, S., Stockley, C., Restani, P. 2021. Polyphenols and Human Health: The Role of Bioavailability. Nutrients, 13(1): 273.en
dc.referencesDi Petrillo, A., Orrù, G., Fais, A., Fantini, M.C. 2022. Quercetin and its derivates as antiviral potentials: A comprehensive review. Phytotherapy Research: PTR, 36(1): 266–278.en
dc.referencesDiantini, A., Subarnas, A., Lestari, K., Halimah, E., Susilawati, Y., Supriyatna, Julaeha, E., Achmad, T. H., Suradji, E.W., Yamazaki, C., Kobayashi, K., Koyama, H., Abdulah, R. 2012. Kaempferol-3-O-rhamnoside isolated from the leaves of Schima wallichii Korth. inhibits MCF-7 breast cancer cell proliferation through activation of the caspase cascade pathway. Oncology Letters, 3(5): 1069–1072.en
dc.referencesEigner, D., Scholz, D. 1999. Ferula asa-foetida and Curcuma longa in traditional medical treatment and diet in Nepal. Journal of Ethnopharmacology, 67(1): 1–6.en
dc.referencesFerlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D.M., Forman, D., Bray, F. 2015. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. International Journal of Cancer, 136(5): E359–E386.en
dc.referencesFerrara N., 2004. Vascular endothelial growth factor as a target for anticancer therapy. Oncologist, 9, Supplement, 1: 2–10.en
dc.referencesFerreira, M.J., Rodrigues, T.A., Pedrosa, A.G., Silva, A.R., Vilarinho, B.G., Francisco, T., Azevedo, J.E. 2023. Glutathione and peroxisome redox homeostasis. Redox Biology, 67: 102917.en
dc.referencesFormica, J.V., Regelson, W. 1995. Review of the biology of Quercetin and related bioflavonoids. Food and Chemical Toxicology: An International Journal published for the British Industrial Biological Research Association, 33(12): 1061–1080.en
dc.referencesFuhrman, B., Aviram, M. 2002. Polyphenols and flavonoids protect LDL against atherogenic modifications. In: Handbook of Antioxidants, Marcel Dekker, Inc., New York, USA.en
dc.referencesGe, Z., Xu, M., Ge, Y., Huang, G., Chen, D., Ye, X., Xiao, Y., Zhu, H., Yin, R., Shen, H., Ma, G., Qi, L., Wei, G., Li, D., Wei, S., Zhu, M., Ma, H., Shi, Z., Wang, X., Ge, X., Qian, X. 2023. Inhibiting G6PD by quercetin promotes degradation of EGFR T790M mutation. Cell Reports, 42(11): 113417.en
dc.referencesGiordano, A., Tommonaro, G. 2019. Curcumin and Cancer. Nutrients, 11(10): 2376.en
dc.referencesGridelli, C., Rossi, A., Carbone, D.P., Guarize, J., Karachaliou, N., Mok, T., Petrella, F., Spaggiari, L., Rosell, R. 2015. Non-small-cell lung cancer. Nature Reviews. Disease Primers, 1: 15009.en
dc.referencesGuan X. 2015. Cancer metastases: challenges and opportunities. Acta Pharmaceutica Sinica B, 5: 402–418.en
dc.referencesGupta V, Sharma R, Bansal P, Kaur G. 2018. Bioactivity-guided isolation of potent anxiolytic compounds from leaves of Citrus paradisi. An International Quarterly Journal of Research in Ayurveda, 39(1): 21–28.en
dc.referencesHäkkinen, S.H., Kärenlampi, S.O., Heinonen, I.M., Mykkänen, H.M., Törrönen, A.R. 1999. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. Journal of Agricultural and Food Chemistry, 47(6): 2274–2279.en
dc.referencesHansen, D.V., Hanson, J.E., Sheng, M. 2018. Microglia in Alzheimer’s disease. The Journal of Cell Biology, 217(2): 459–472.en
dc.referencesHewlings, S.J., Kalman, D.S. 2017. Curcumin: A Review of Its Effects on Human Health. Foods (Basel, Switzerland), 6(10): 92.en
dc.referencesHuang, L., Yagura, T., Chen, S. 2008. Sedative activity of hexane extract of Keampferia galanga L. and its active compounds. Journal of Ethnopharmacology, 120(1): 123–125.en
dc.referencesImran M., Salehi B., Sharifi-Rad J., Aslam Gondal T., Saeed F., Imran A., Shahbaz M., Tsouh Fokou P.V., Umair Arshad M., Khan H., Guerreiro S.G., Martins N., Estevinho L.M. 2019. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules, 24(12): 2277.en
dc.referencesIonescu, V.A., Gheorghe, G., Bacalbasa, N., Chiotoroiu, A.L., Diaconu, C. 2023. Colorectal Cancer: From Risk Factors to Oncogenesis. Medicina (Kaunas, Lithuania), 59(9): 1646.en
dc.referencesJeong, J.C., Kim, M.S., Kim, T.H., Kim, Y.K. 2009. Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochemical Research, 34: 991–1001.en
dc.referencesJin, Z., McDonald, E.R., Dicker, D.T., El-Deiry, W.S. 2004. Deficient tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) death receptor transport to the cell surface in human colon cancer cells selected for resistance to TRAIL-induced apoptosis. The Journal of Biological Chemistry, 279: 35829–35839.en
dc.referencesJin, S., Zhang, L., Wang, L. 2023. Kaempferol, a potential neuroprotective agent in neurodegenerative diseases: From chemistry to medicine. Biomedicine Pharmacotherapy, 165: 115215.en
dc.referencesKang, G.Y., Lee, E.R., Kim, J.H., Jung, J.W., Lim, J., Kim, S.K., Cho, S.G., Kim, K.P. 2009. Downregulation of PLK-1 expression in kaempferol-induced apoptosis of MCF-7 cells. European Journal of Pharmacology, 611(1–3): 17–21.en
dc.referencesKempuraj, D., Madhappan, B., Christodoulou, S., Boucher, W., Cao, J., Papadopoulou, N., Cetrulo, C.L., Theoharides, T.C. 2005. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. British Journal of Pharmacology, 145(7): 934–944.en
dc.referencesKeyhanian, S., Stahl-Biskup, E. 2007. Phenolic constituents in dried flowers of aloe vera (Aloe barbadensis) and their in vitro antioxidative capacity. Planta Medica, 73: 599–602.en
dc.referencesKhazdair, M., Anaeigoudari, A., Agbor, G. 2021. Anti-viral and anti-inflammatory effects of kaempferol and quercetin and COVID-2019: A scoping review. Asian Pacific Journal of Tropical Biomedicine, 11: 327–334.en
dc.referencesKim, B.W., Lee, E.R., Min, H.M., Jeong, H.S., Ahn, J.Y., Kim, J.H., Choi, H.Y., Choi, H., Kim, E.Y., Park S.P. 2008. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biology Therapy, 7: 1080–1089.en
dc.referencesKim, S.H., Choi, K.C. 2013. Anti-cancer Effect and Underlying Mechanism(s) of Kaempferol, a Phytoestrogen, on the Regulation of Apoptosis in Diverse Cancer Cell Models. Toxicological Research, 29: 229–234.en
dc.referencesKim, B., Kim, H.S., Jung, E.J., Lee, J.Y., Tsang, B.K., Lim, J.M., Song, Y.S. 2016. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Molecular Carcinogenesis, 55(5): 918–928.en
dc.referencesKotha, R.R., Luthria, D.L. 2019. Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules (Basel, Switzerland), 24(16): 2930.en
dc.referencesChen, L., Na, R., McLane K.D., Thompson, C.S., Gao, J., Wang, X., Ran, Q. 2021. Overexpression of ferroptosis defense enzyme Gpx4 retards motor neuron disease of SOD1G93A mice. Scientific Report, 11(1): 12890en
dc.referencesLattanzio, V. 2013. Phenolic Compounds: Introduction. In Ramawat, K.G., Mérillon J.-M. (Eds.), Natural Products: 1543–1580.en
dc.referencesLee, V.S., Chen, C.R., Liao, Y.W., Tzen, J.T., Chang, C.I. 2008. Structural determination and DPPH radical-scavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis). Chemical Pharmaceutical Bulletin, 56(6): 851–853.en
dc.referencesLeung, H.W., Lin, C.J., Hour, M.J., Yang, W.H., Wang, M.Y., Lee, H.Z. 2007. Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 45(10): 2005–2013.en
dc.referencesLi, C., Zhao, Y., Yang, D., Yu, Y., Guo, H., Zhao, Z., Zhang, B., Yin, X. 2015. Inhibitory effects of kaempferol on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Biochemistry and Cell Biology, 93(1): 16–27.en
dc.referencesLi, W., Du, B., Wang, T., Wang, S., Zhang, J. 2009. Kaempferol induces apoptosis in human HCT116 colon cancer cells via the Ataxia-Telangiectasia Mutated-p53 pathway with the involvement of p53 Upregulated Modulator of Apoptosis. Chemico-Biological Interactions, 177(2): 121–127.en
dc.referencesLi, Y., Fang, H., Xu, W. 2007. Recent advance in the research of flavonoids as anticancer agents. Mini Reviews in Medicinal Chemistry, 7(7): 663–678.en
dc.referencesLi, Y., Yao, J., Han, C., Yang, J., Chaudhry, M.T., Wang, S., Liu, H., Yin, Y. 2016. Quercetin, Inflammation and Immunity. Nutrients, 8(3): 167.en
dc.referencesLim, D.Y., Jeong, Y., Tyner, A.L., Park, J.H. 2007. Induction of cell cycle arrest and apoptosis in HT-29 human colon cancer cells by the dietary compound luteolin. American Journal of Physiology, Gastrointestinal and Liver Physiology, 292(1): G66–G75.en
dc.referencesLin, C.W., Chen, P.N., Chen, M.K., Yang, W.E., Tang, C.H., Yang, S.F., Hsieh, Y.S. 2013. Kaempferol reduces matrix metalloproteinase-2 expression by down-regulating ERK1/2 and the activator protein-1 signaling pathways in oral cancer cells. PloS One, 8(11): e80883.en
dc.referencesLin, Y.G., Kunnumakkara, A.B., Nair, A., Merritt, W.M., Han, L.Y., Armaiz-Pena, G.N., Kamat, A.A., Spannuth, W.A., Gershenson, D.M., Lutgendorf, S.K., Aggarwal, B.B., Sood, A.K. 2007. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 13(11): 3423–3430.en
dc.referencesLink, A., Balaguer, F., Shen, Y., Lozano, J.J., Leung, H.C., Boland, C.R., Goel, A. 2013. Curcumin modulates DNA methylation in colorectal cancer cells. PloS One, 8(2): e57709.en
dc.referencesLiu, C., Rokavec, M., Huang, Z., Hermeking, H. 2023. Curcumin activates a ROS/KEAP1/NRF2/miR-34a/b/c cascade to suppress colorectal cancer metastasis. Cell Death and Differentiation, 30(7): 1771–1785.en
dc.referencesLuo, H., Daddysman, M.K., Rankin, G.O., Jiang, B.H., Chen, Y.C. 2010. Kaempferol enhances cisplatin’s effect on ovarian cancer cells through promoting apoptosis caused by down regulation of cMyc. Cancer Cell International, 10: 1.en
dc.referencesMantovani, A., Allavena, P., Sica, A., Balkwill, F. 2008. Cancer-related inflammation. Nature, 454(7203): 436–444.en
dc.referencesMatsuda, H., Ninomiya, K., Shimoda, H., Yoshikawa, M. 2002. Hepatoprotective principles from the flowers of Tilia argentea (linden): structure requirements of tiliroside and mechanisms of action. Bioorganic Medicinal Chemistry, 10: 707–712.en
dc.referencesMokhtari-Zaer, A., Khazdair, M.R., Boskabady, M.H. 2015. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna Journal of Phytomedicine, 5: 365.en
dc.referencesMonroy, A., Lithgow, G. J., Alavez, S. 2013. Curcumin and neurodegenerative diseases. BioFactors (Oxford, England), 39(1): 122–132.en
dc.referencesMorgan, M.J., Liu, Z.G., 2011. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Research, 21(1): 103–115.en
dc.referencesMylonis, I., Lakka, A., Tsakalof, A., Simos, G. 2010. The dietary flavonoid kaempferol effectively inhibits HIF-1 activity and hepatoma cancer cell viability under hypoxic conditions. Biochemical and Biophysical Research Communications, 398: 74–78.en
dc.referencesNakamura, Y., Chang, C.C., Mori, T., Sato, K., Ohtsuki, K., Upham, B.L., Trosko, J.E. 2005. Augmentation of differentiation and gap junction function by kaempferol in partially differentiated colon cancer cells. Carcinogenesis, 26: 665–671.en
dc.referencesNarimatsu, H., Yaguchi, Y.T. 2022. The Role of Diet and Nutrition in Cancer: Prevention, Treatment, and Survival. Nutrients, 14(16): 3329.en
dc.referencesNinomiya, M., Nishida, K., Tanaka, K., Watanabe, K., Koketsu, M. 2013. Structure-activity relationship studies of 5,7-dihydroxyflavones as naturally occurring inhibitors of cell proliferation in human leukemia HL 60 cells. Journal of Natural Medicines, 67: 460–467.en
dc.referencesNjau, E.P., Machuka, E.M., Cleaveland, S., Shirima, G.M., Kusiluka, L.J., Okoth, E.A. 2021. Pelle R. African Swine Fever Virus (ASFV): Biology, Genomics and Genotypes Circulating in Sub-Saharan Africa. Viruses, 13: 2285.en
dc.referencesOwis, A.I., El-Hawary, M.S., El Amir, D., Aly, O.M., Abdelmohsen, U.R., Kamel, M.S. 2020. Molecular docking reveals the potential of Salvadora persica flavonoids to inhibit COVID-19 virus main protease. RSC Advances, 10(33): 19570–19575.en
dc.referencesPambo-Pambo, A., Durand, J., Gueritaud, J.P. 2009. Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. Journal of Neurophysiology, 102(6): 3627–3642.en
dc.referencesPanahi, Y., Hosseini, M.S., Khalili, N., Naimi, E., Simental-Mendía, L.E., Majeed, M., Sahebkar, A. 2016. Effects of curcumin on serum cytokine concentrations in subjects with metabolic syndrome: A post-hoc analysis of a randomized controlled trial. Biomedicine Pharmacotherapy, 82: 578–582.en
dc.referencesParvez, M.K., Al-Dosari, M.S., Basudan, O.A., Herqash, R.N. 2022. The anti hepatitis B virus activity of sea buckthorn is attributed to quercetin, kaempferol and isorhamnetin. Biomedical Reports, 17(5): 89.en
dc.referencesPeriferakis A., Periferakis K. 2020. On the Dissemination of Acupuncture to Europe. JournalNX, 6: 201–209.en
dc.referencesPeriferakis, A., Periferakis, A.T., Troumpata, L., Periferakis, K., Scheau, A.E., Savulescu-Fiedler, I., Caruntu, A., Badarau, I.A., Caruntu, C., Scheau, C. 2023. Kaempferol: A Review of Current Evidence of Its Antiviral Potential. International Journal of Molecular Sciences, 24(22): 16299.en
dc.referencesPetrick, J.L., Steck, S.E., Bradshaw, P.T., Trivers, K.F., Abrahamson, P.E., Engel, L.S., He, K., Chow, W. H., Mayne, S.T., Risch, H.A., Vaughan, T.L., Gammon, M.D. 2015. Dietary intake of flavonoids and oesophageal and gastric cancer: incidence and survival in the United States of America (USA). British Journal of Cancer, 112(7): 1291–1300.en
dc.referencesPetrus, K., Schwartz, H., Sontag, G. 2011. Analysis of flavonoids in honey by HPLC coupled with coulometric electrode array detection and electrospray ionization mass spectrometry. Analytical and Bioanalytical Chemistry, 400(8): 2555–2563.en
dc.referencesPrior, R.L. 2003. Fruits and vegetables in the prevention of cellular oxidative damage. The American Journal of Clinical Nutrition, 78(3 Suppl.): 570S–578S.en
dc.referencesPriyadarsini, K.I. 1997. Free radical reactions of curcumin in membrane models. Free Radical Biology Medicine, 23(6): 838–843.en
dc.referencesPriyadarsini, K.I. 2014. The chemistry of curcumin: from extraction to therapeutic agent. Molecules (Basel, Switzerland), 19(12): 20091–20112.en
dc.referencesPriyadarsini, K.I., Maity, D.K., Naik, G.H., Kumar, M.S., Unnikrishnan, M.K., Satav, J.G., Mohan, H. 2003. Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radical Biology Medicine, 35(5): 475–484.en
dc.referencesPulido-Moran, M., Moreno-Fernandez, J., Ramirez-Tortosa, C., Ramirez-Tortosa, M. 2016. Curcumin and Health. Molecules (Basel, Switzerland), 21(3): 264.en
dc.referencesQuinn, M.T., Parthasarathy, S., Fong, L.G., Steinberg, D. 1987. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proceedings of the National Academy of Sciences of USA, 84: 2995–2998.en
dc.referencesRajendran, P., Abdelsalam, S.A., Renu, K., Veeraraghavan, V., Ben Ammar, R., Ahmed, E.A. 2022. Polyphenols as Potent Epigenetics Agents for Cancer. International Journal of Molecular Sciences, 23: 11712.en
dc.referencesRen, H.J., Hao, H.J., Shi, Y.J., Meng, X.M., Han, Y.Q. 2010. Apoptosis-inducing effect of quercetin and kaempferol on human HL-60 cells and its mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 18(3): 629–633.en
dc.referencesRodríguez Galdón, B., Rodríguez Rodríguez, E., Díaz Romero, C. 2008. Flavonoids in onion cultivars (Allium cepa L.). Journal of Food Science, 73: C599–C605.en
dc.referencesRoszkowski, S. 2023. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules (Basel, Switzerland), 28(10): 4080.en
dc.referencesSak, K. 2014. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacognosy Reviews, 8: 122–146.en
dc.referencesSharma, V., Joseph, C., Ghosh, S., Agarwal, A., Mishra, M.K., Sen, E. 2007. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Molecular Cancer Therapeutics, 6: 2544–2553.en
dc.referencesSilva Dos Santos, J., Gonçalves Cirino, J.P., de Oliveira Carvalho, P., Ortega, M.M. 2021. The Pharmacological Action of Kaempferol in Central Nervous System Diseases: A Review. Frontiers in Pharmacology, 11: 565700.en
dc.referencesSilva, B., Oliveira, P.J., Dias, A., Malva, J.O. 2008. Quercetin, kaempferol and biapigenin from Hypericum perforatum are neuroprotective against excitotoxic insults. Neurotoxicity Research, 13(3–4): 265–279.en
dc.referencesSingh, N., Baby, D., Rajguru, J.P., Patil, P.B., Thakkannavar, S.S., Pujari, V.B. 2019. Inflammation and cancer. Annals of African Medicine, 18(3): 121–126.en
dc.referencesSingh, P., Arif, Y., Bajguz, A., Hayat, S. 2021. The role of quercetin in plants. Plant Physiology and Biochemistry: PPB, 166: 10–19.en
dc.referencesSlimestad, R., Fossen, T., Vågen, I.M. 2007. Onions: a source of unique dietary flavonoids. Journal of Agricultural and Food Chemistry, 55(25): 10067–10080.en
dc.referencesSteinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C., Witztum, J.L. 1989. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. The New England Journal of Medicine, 320(14): 915–924.en
dc.referencesSteinbrecher, U.P., Parthasarathy, S., Leake, D.S., Witztum, J.L., Steinberg, D. 1984. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proceedings of the National Academy of Sciences of USA, 81(12): 3883–3887.en
dc.referencesSun, J., Liu, X., Yang, T., Slovin, J., Chen, P. 2014. Profiling polyphenols of two diploid strawberry (Fragaria vesca) inbred lines using UHPLC-HRMS(n.). Food Chemistry, 146: 289–298.en
dc.referencesSzliszka, E., Helewski, K.J., Mizgala, E., Krol, W. 2011. The dietary flavonol fisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. International Journal of Oncology, 39(4): 771–779.en
dc.referencesTeng, H., Chen, L. 2019. Polyphenols and bioavailability: an update. Critical Reviews in Food Science and Nutrition, 59(13): 2040–2051.en
dc.referencesThorburn, A. 2004. Death receptor-induced cell killing. Cellular Signalling, 16:139–144.en
dc.referencesTomás-Barberán, F.A., Ferreres, F. 2012. Analytical methods of flavonols and flavones. In: Analysis of Antioxidant-Rich Phytochemicals, Xu Z., Howard L.R., Eds.; John Wiley Sons Ltd, Hoboken, NJ, USA.en
dc.referencesVisioli, F., De La Lastra, C.A., Andres-Lacueva, C., Aviram, M., Calhau, C., Cassano, A., D’Archivio, M., Faria, A., Favé, G., Fogliano, V., Llorach, R., Vitaglione, P., Zoratti, M., Edeas, M. 2011. Polyphenols and human health: a prospectus. Critical Reviews in Food Science and Nutrition, 51(6): 524–546.en
dc.referencesVollono, L., Falconi, M., Gaziano, R., Iacovelli, F., Dika, E., Terracciano, C., Bianchi, L., Campione, E. 2019. Potential of Curcumin in Skin Disorders. Nutrients, 11(9): 2169.en
dc.referencesWang, Z.X., Ma, J., Li, X.Y., Wu, Y., Shi, H., Chen, Y., Lu, G., Shen, H.M., Lu, G.D., Zhou, J. 2021. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. British Journal of Pharmacology, 178(5): 1133–1148.en
dc.referencesWHO, 2014. World Cancer Report 2014. (Stewart, B.W. and Wild, C.P., Eds.). IARC.en
dc.referencesWiczkowski, W., Romaszko, J., Bucinski, A., Szawara-Nowak, D., Honke, J., Zielinski, H., Piskula, M.K. 2008. Quercetin from shallots (Allium cepa L. var. aggregatum) is more bioavailable than its glucosides. The Journal of Nutrition, 138(5): 885–888.en
dc.referencesWilliamson, G., Manach, C. 2005. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. The American Journal of Clinical Nutrition, 81(1 Suppl): 243S–255S.en
dc.referencesWright, J.S. 2002. Predicting the Antioxidant Activity of Curcumin and Curcuminoids. Journal of Molecular Structure: THEOCHEM, 591: 207×217.en
dc.referencesYang, X., Ji, Y., Wang, W., Zhang, L., Chen, Z., Yu, M., Shen, Y., Ding, F., Gu, X., Sun, H. 2021. Amyotrophic lateral sclerosis: molecular mechanisms, biomarkers, and therapeutic strategies. Antioxidants, (Basel), 10 (7): 1012.en
dc.referencesXue, Q., Yan, D., Chen, X., Li, X., Kang, R., Klionsky, D.J., Kroemer, G., Chen, X., Tang, D., Liu, J. 2023. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy, 19(7): 1982–1996.en
dc.referencesYang, C.L., Ma, Y.G., Xue, Y.X., Liu, Y.Y., Xie, H., Qiu, G.R. 2012. Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA and Cell Biology, 31(2): 139–150.en
dc.referencesYang, Z.F., Bai, L.P., Huang, W.B., Li, X.Z., Zhao, S.S., Zhong, N.S., Jiang, Z.H. 2014. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia, 93, 47–53.en
dc.referencesYoshida, T., Konishi, M., Horinaka, M., Yasuda, T., Goda, A.E., Taniguchi, H., Yano, K., Wakada, M., Sakai, T. 2008. Kaempferol sensitizes colon cancer cells to TRAIL-induced apoptosis. Biochemical and Biophysical Research Communications, 375(1): 129–133.en
dc.referencesZhang, Y., Chen, A.Y., Li, M., Chen, C., Yao, Q. 2008. Ginkgo biloba extract kaempferol inhibits cell proliferation and induces apoptosis in pancreatic cancer cells. The Journal of Surgical Research, 148(1): 17–23.en
dc.referencesZhou, B., Yang, Y., Pang, X., Shi, J., Jiang, T., Zheng, X. 2023. Quercetin inhibits DNA damage responses to induce apoptosis via SIRT5/PI3K/AKT pathway in non-small cell lung cancer. Biomedicine pharmacotherapy, 165: 115071.en
dc.referencesZłotek, U., Świeca, M., Jakubczyk, A. 2014. Effect of abiotic elicitation on main health-promoting compounds, antioxidant activity and commercial quality of butter lettuce (Lactuca sativa L.). Food Chemistry, 148:253 260.en
dc.contributor.authorEmailWielgus, Małgorzata - malgorzata.wielgus@edu.uni.lodz.pl
dc.contributor.authorEmailZaniewicz, Nikola - malgorzata.wielgus@edu.uni.lodz.pl
dc.identifier.doi10.18778/1730-2366.18.09
dc.relation.volume18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0