dc.contributor.author | Doryń, Wirginia | |
dc.contributor.author | Wawrzyniak, Dorota | |
dc.date.accessioned | 2024-09-30T13:27:58Z | |
dc.date.available | 2024-09-30T13:27:58Z | |
dc.date.issued | 2024-09-30 | |
dc.identifier.issn | 1508-2008 | |
dc.identifier.uri | http://hdl.handle.net/11089/53261 | |
dc.description.abstract | The ongoing decline in environmental quality is one of the biggest global challenges facing humankind today. The purpose of this study is to investigate the differences and similarities among the EU–27 countries regarding air pollution emissions (greenhouse gases and acidifying gases) and their techno-economic determinants, which encompass economic, energy, innovation and institutional quality factors. The analysis covers nine indicators that reflect pollution emissions and fifteen variables that illustrate air pollution drivers. Cluster analysis of the data averaged for the period 2015–2020 was used to identify subgroups of countries. The results show that European Union (EU) countries substantially differ in terms of both air pollution levels and the determinants of the emissions. The analysis revealed a noticeable division between Eastern EU countries, which show similar patterns both in terms of pollution and determinants, and Western EU countries, which were characterised by greater diversity in terms of the analysed features. In light of the results, the assertion about backward and polluted new EU member states compared to more advanced and environmentally uncontaminated old EU countries appears to oversimplify the reality. The findings contribute to the ongoing discussion on environmental quality. Our results indicate the need and space for initiatives that address factors that influence air pollution in order to impede environmental degradation. However, due to the revealed heterogeneity among countries, the efforts should be tailored to the specific country’s characteristics. | en |
dc.description.abstract | Ciągłe pogarszanie się jakości środowiska naturalnego jest jednym z najważniejszych globalnych wyzwań, przed którymi stoi obecnie ludzkość. Celem niniejszego badania była analiza różnic i podobieństw między krajami UE–27 w zakresie emisji zanieczyszczeń powietrza (gazów cieplarnianych i gazów zakwaszających) oraz ich uwarunkowań techniczno-ekonomicznych, obejmujących czynniki ekonomiczne, energetyczne, instytucjonalne oraz poziom innowacyjności. Analizę przeprowadzono na podstawie dziewięciu wskaźników ilustrujących emisje zanieczyszczeń oraz piętnastu zmiennych reprezentujących determinanty zanieczyszczenia powietrza, wykorzystując ich średnie wartości z lat 2015–2020. Do zidentyfikowania podgrup krajów o podobnych wzorcach zastosowano analizę skupień. Otrzymane wyniki wskazują na znaczące zróżnicowanie krajów UE zarówno pod względem poziomów zanieczyszczenia powietrza, jak i determinant emisji. Przeprowadzona analiza ujawniła istotne różnice pomiędzy wschodnimi krajami UE, wykazującymi wspólne wzorce zanieczyszczeń powietrza i determinant emisji, oraz zachodnimi krajami UE, które cechowały się większym zróżnicowaniem pod względem analizowanych cech. W świetle uzyskanych wyników twierdzenie o zacofanych i zanieczyszczonych nowych państwach członkowskich UE w porównaniu z bardziej zaawansowanymi i nieskażonymi środowiskowo starymi krajami UE wydaje się nadmiernie upraszczać rzeczywistość. Nasze wyniki stanowią wkład w toczącą się dyskusję na temat jakości środowiska. Wskazują na potrzebę i przestrzeń do podjęcia działań w obszarze czynników wpływających na zanieczyszczenie powietrza w celu zahamowania degradacji środowiska naturalnego. Niemniej jednak, ze względu na ujawnioną heterogeniczność między krajami, wysiłki powinny być dostosowane do ich specyfiki. | pl |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Comparative Economic Research. Central and Eastern Europe;3 | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | air pollution | en |
dc.subject | greenhouse gas (GHG) emissions | en |
dc.subject | acidifying gas (ACG) emissions | en |
dc.subject | cluster analysis | en |
dc.subject | European Union countries | en |
dc.subject | zanieczyszczenie powietrza | pl |
dc.subject | emisja gazów cieplarnianych | pl |
dc.subject | emisja gazów zakwaszających | pl |
dc.subject | analiza skupień | pl |
dc.subject | kraje Unii Europejskiej | pl |
dc.title | Heterogeneity in Air Pollution Levels and Their Techno‑economic Determinants: A Cluster Analysis of the EU–27 | en |
dc.title.alternative | Zróżnicowanie poziomu zanieczyszczenia powietrza i jego uwarunkowań techniczno-ekonomicznych: analiza skupień dla krajów UE–27 | pl |
dc.type | Article | |
dc.page.number | 47-66 | |
dc.contributor.authorAffiliation | Doryń, Wirginia - University of Lodz, Faculty of Economics and Sociology, Department of Economic Mechanisms Lodz, Poland | en |
dc.contributor.authorAffiliation | Wawrzyniak, Dorota - University of Lodz, Faculty of Economics and Sociology, Department of Economic Mechanisms Lodz, Poland | en |
dc.identifier.eissn | 2082-6737 | |
dc.references | Aghel, B., Sahraie, S., Heidaryan, E. (2020), Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor, “Separation and Purification Technology”, 237, 116390, https://doi.org/10.1016/j.seppur.2019.116390 | en |
dc.references | Arminen, H., Menegaki, A.N. (2019), Corruption, climate and the energy-environment growth nexus, “Energy Economics”, 80, pp. 621–634, https://doi.org/10.1016/j.eneco.2019.02.009 | en |
dc.references | Aung, T.S., Fischer, T.B., Azmi, A.S. (2020), Are large-scale dams environmentally detrimental? Life-cycle environmental consequences of mega-hydropower plants in Myanmar, “The International Journal of Life Cycle Assessment”, 25, pp. 1749–1766, https://doi.org/10.1007/s11367-020-01795-9 | en |
dc.references | Bai, C., Feng, C., Yan, H., Yi, X., Chen, Z., Wei, W. (2020), Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions?, “Journal of Environmental Management”, 264, 110482, https://doi.org/10.1016/j.jenvman.2020.110482 | en |
dc.references | Bekun, F.V., Gyamfi, B.A., Onifade, S.T., Agboola, M.O. (2021), Beyond the environmental Kuznets Curve in E7 economies: accounting for the combined impacts of institutional quality and renewables, “Journal of Cleaner Production”, 314, 127924, https://doi.org/10.1016/j.jclepro.2021.127924 | en |
dc.references | Cheng, C., Ren, X., Wang, Z., Yan, C. (2019), Heterogeneous impacts of renewable energy and environmental patents on CO2 emission – Evidence from the BRIICS, “Science of the Total Environment”, 668, pp. 1328–1338, https://doi.org/10.1016/j.scitotenv.2019.02.063 | en |
dc.references | Cheng, C., Ren, X., Dong, K., Dong, X., Wang, Z. (2021), How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression, “Journal of Environmental Management”, 280, 111818, https://doi.org/10.1016/j.jenvman.2020.111818 | en |
dc.references | Chien, F., Anwar, A., Hsu, C.-C., Sharif, A., Razzaq, A., Sinha, A. (2021), The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries, “Technology in Society”, 65, 101587, https://doi.org/10.1016/j.techsoc.2021.101587 | en |
dc.references | Cifuentes-Faura, J. (2022), European Union policies and their role in combating climate change over the years, “Air Quality, Atmosphere & Health”, 15, pp. 1333–1340, https://doi.org/10.1007/s11869-022-01156-5 | en |
dc.references | Consolidated versions of the Treaty on European Union and the Treaty on the functioning of the European Union (2012/c 326/01), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/TXT (accessed: 28.04.2023). | en |
dc.references | Du, K., Li, P., Yan, Z. (2019), Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data, “Technological Forecasting and Social Change”, 146, pp. 297–303, https://doi.org/10.1016/j.techfore.2019.06.010 | en |
dc.references | Ehigiamusoe, K.U., Lean, H.H., Smyth, R. (2020), The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries, “Applied Energy”, 261, 114215, https://doi.org/10.1016/j.apenergy.2019.114215 | en |
dc.references | European Environment Agency (2023), Europe’s air quality status 2023, https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed: 28.04.2023). | en |
dc.references | European Parliament (2018), Climate change in Europe: facts and figures, https://www.europarl.europa.eu/news/en/headlines/priorities/climate-change/20180703STO07123/climate-change-in-europe-facts-and-figures (accessed: 26.04.2023). | en |
dc.references | European Parliament (2023), Combating climate change, https://www.europarl.europa.eu/factsheets/en/sheet/72/combating-climate-change (accessed: 26.04.2023). | en |
dc.references | Eurostat (2023), Key figures on the EU in the world. 2023 edition, https://doi.org/10.2785/515035 | en |
dc.references | Gholipour, H.F., Farzanegan, M.R. (2018), Institutions and the effectiveness of expenditures on environmental protection: evidence from Middle Eastern countries, “Constitutional Political Economy”, 29 (1), pp. 20–39, https://doi.org/10.1007/s10602-017-9246-x | en |
dc.references | Govender, P., Sivakumar, V. (2020), Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019), “Atmospheric Pollution Research”, 11 (1), pp. 40–56, https://doi.org/10.1016/j.apr.2019.09.009 | en |
dc.references | Guterres, I. (2022), Enforcing Environmental Policy – the role of the European Union, “UNIO – EU Law Journal”, 8 (1), pp. 32–52, https://doi.org/10.21814/unio.8.1.4522 | en |
dc.references | Hall, B.H. (2007), Measuring the returns to R&D: The depreciation problem, “NBER Working Paper”, 13473, https://doi.org/10.3386/w13473 | en |
dc.references | Hastie, T., Tibshirani, R., Friedman, J.H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, https://doi.org/10.1007/978-0-387-84858-7 | en |
dc.references | Işık, C., Ongan, S., Özdemir, D. (2019), Testing the EKC hypothesis for ten US states: an application of heterogeneous panel estimation method, “Environmental Science and Pollution Research”, 26, pp. 10846–10853, https://doi.org/10.1007/s11356-019-04514-6 | en |
dc.references | Jajuga, K., Walesiak, M. (2000), Standardisation of Data Set under Different Measurement Scales, [in:] R. Decker, W. Gaul (eds.), Classification and Information Processing at the Turn of the Millennium, Springer-Verlag, Berlin–Heidelberg, pp. 105–112, https://doi.org/10.1007/978-3-642-57280-7_11 | en |
dc.references | Jinqiao, L., Maneengam, A., Saleem, F., Mukarram, S.S. (2022), Investigating the role of financial development and technology innovation in climate change: evidence from emerging seven countries, “Economic Research – Ekonomska Istraživanja”, 35 (1), pp. 3940–3960, https://doi.org/10.1080/1331677X.2021.2007152 | en |
dc.references | Karim, S., Appiah, M., Naeem, M.A., Lucey, B.M., Li, M. (2022), Modelling the role of institutional quality on carbon emissions in Sub-Saharan African countries, “Renewable Energy”, 198, pp. 213–221, https://doi.org/10.1016/j.renene.2022.08.074 | en |
dc.references | Kaufmann, D., Kraay, A. (2023), Worldwide Governance Indicators, 2023 Update, https://www.govindicators.org (accessed: 27.10.2023). | en |
dc.references | Kaufmann, D., Kraay, A., Mastruzzi, M. (2010), The Worldwide Governance Indicators: Methodology and Analytical Issues, “World Bank Policy Research Working Paper”, 5430, https://ssrn.com/abstract=1682130 (accessed: 27.10.2023). | en |
dc.references | Khan, H., Weili, L., Khan, I. (2022), Institutional quality, financial development and the influence of environmental factors on carbon emissions: evidence from a global perspective, “Environmental Science and Pollution Research”, 29 (9), pp. 13356–13368, https://doi.org/10.1007/s11356-021-16626-z | en |
dc.references | Kula, F., Ünlü, F. (2019), Ecological Innovation Efforts and Performances: An Empirical Analysis, [in]: M. Shahbaz, D. Balsalobre (eds.), Energy and Environmental Strategies in the Era of Globalization, Springer, Cham, pp. 221–250, https://doi.org/10.1007/978-3-030-06001-5_9 | en |
dc.references | Lingyan, M., Zhao, Z., Malik, H.A., Razzaq, A., An, H., Hassan, M. (2022), Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries, “Energy & Environment”, 33 (4), pp. 752–782, https://doi.org/10.1177/0958305X211018453 | en |
dc.references | Liu, X., Bae, J. (2018), Urbanization and industrialization impact of CO2 emissions in China, “Journal of Cleaner Production”, 172, pp. 178–186, https://doi.org/10.1016/j.jclepro.2017.10.156 | en |
dc.references | Mehmood, U., Tariq, S., Ul-Haq, Z., Meo, M.S. (2021), Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach, “Environmental Science and Pollution Research”, 28, pp. 10167–10174, https://doi.org/10.1007/s11356-020-11293-y | en |
dc.references | Nielsen, F. (2016), Introduction to HPC with MPI for Data Science, Springer, Cham, https://doi.org/10.1007/978-3-319-21903-5 | en |
dc.references | OECD (2008), Handbook on Constructing Composite Indicators: Methodology and User Guide, OECD Publishing, Paris, https://doi.org/10.1787/9789264043466-en | en |
dc.references | Ongan, S., Isik, C., Ozdemir, D. (2020), Economic growth and environmental degradation: evidence from the US case environmental Kuznets curve hypothesis with application of decomposition, “Journal of Environmental Economics and Policy”, 10 (1), pp. 14–21, https://doi.org/10.1080/21606544.2020.1756419 | en |
dc.references | Piva, M., Vivarelli, M. (2018), Technological change and employment: is Europe ready for the challenge?, “Eurasian Business Review”, 8 (1), pp. 13–32, https://doi.org/10.1007/s40821-017-0100-x | en |
dc.references | Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No. 401/2009 and (EU) 2018/1999 (‘European Climate Law’), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1119 (accessed: 27.04.2023). | en |
dc.references | Shan, S., Genç, S.Y., Kamran, H.W., Dinca, G. (2021), Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey, “Journal of Environmental Management”, 294, 113004, https://doi.org/10.1016/j.jenvman.2021.113004 | en |
dc.references | Singh, A., Agrawal, M. (2008), Acid rain and its ecological consequences, “Journal of Environmental Biology”, 29 (1), pp. 15–24. | en |
dc.references | Wang, Q., Yang, T., Li, R. (2023), Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis, “Environmental Research”, 216, 114575, https://doi.org/10.1016/j.envres.2022.114575 | en |
dc.references | Wang, S., Zeng, J., Liu, X. (2019), Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach, “Renewable and Sustainable Energy Reviews”, 103, pp. 140–150, https://doi.org/10.1016/j.rser.2018.12.046 | en |
dc.references | Wawrzyniak, D., Doryń, W. (2020), Does the quality of institutions modify the economic growth-carbon dioxide emissions nexus? Evidence from a group of emerging and developing countries, “Economic Research – Ekonomska Istraživanja”, 33 (1), pp. 124–144, https://doi.org/10.1080/1331677X.2019.1708770 | en |
dc.references | Weina, D., Gilli, M., Mazzanti, M., Nicolli, F. (2016), Green inventions and greenhouse gas emission dynamics: a close examination of provincial Italian data, “Environmental Economics and Policy Studies”, 18 (2), pp. 247–263, https://doi.org/10.1007/s10018-015-0126-1 | en |
dc.references | World Health Organization (2021), WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, Geneva, https://apps.who.int/iris/handle/10665/345329 (accessed: 27.10.2023). | en |
dc.references | Wu, W.L. (2017), Institutional Quality and Air Pollution: International Evidence, “International Journal of Business and Economics”, 16 (1), pp. 49–74, https://ijbe.fcu.edu.tw/past_issues/NO.16-1/pdf/vol_16-1-4.pdf (accessed: 18.04.2023). | en |
dc.references | Yildirim, J., Alpaslan, B., Eker, E.E. (2021), The role of social capital in environmental protection efforts: Evidence from Turkey, “Journal of Applied Statistics”, 48 (13–15), pp. 2626–2642, https://doi.org/10.1080/02664763.2020.1843609 | en |
dc.references | Zhang, Y.-J., Liu, Z., Zhang, H., Tan, T.-D. (2014), The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China, “Natural Hazards”, 73, pp. 579–595, https://doi.org/10.1007/s11069-014-1091-x | en |
dc.references | Zheng, Y.M., Lv, Q., Wang, Y.D. (2022), Economic development, technological progress, and provincial carbon emissions intensity: empirical research based on the threshold panel model, “Applied Economics”, 54 (30), pp. 3495–3504, https://doi.org/10.1080/00036846.2021.2009760 | en |
dc.contributor.authorEmail | Doryń, Wirginia - wirginia.doryn@uni.lodz.pl | |
dc.contributor.authorEmail | Wawrzyniak, Dorota - dorota.wawrzyniak@uni.lodz.pl | |
dc.identifier.doi | 10.18778/1508-2008.27.21 | |
dc.relation.volume | 27 | |