Pokaż uproszczony rekord

dc.contributor.authorDoryń, Wirginia
dc.contributor.authorWawrzyniak, Dorota
dc.date.accessioned2024-09-30T13:27:58Z
dc.date.available2024-09-30T13:27:58Z
dc.date.issued2024-09-30
dc.identifier.issn1508-2008
dc.identifier.urihttp://hdl.handle.net/11089/53261
dc.description.abstractThe ongoing decline in environmental quality is one of the biggest global challenges facing humankind today. The purpose of this study is to investigate the differences and similarities among the EU–27 countries regarding air pollution emissions (greenhouse gases and acidifying gases) and their techno-economic determinants, which encompass economic, energy, innovation and institutional quality factors. The analysis covers nine indicators that reflect pollution emissions and fifteen variables that illustrate air pollution drivers. Cluster analysis of the data averaged for the period 2015–2020 was used to identify subgroups of countries. The results show that European Union (EU) countries substantially differ in terms of both air pollution levels and the determinants of the emissions. The analysis revealed a noticeable division between Eastern EU countries, which show similar patterns both in terms of pollution and determinants, and Western EU countries, which were characterised by greater diversity in terms of the analysed features. In light of the results, the assertion about backward and polluted new EU member states compared to more advanced and environmentally uncontaminated old EU countries appears to oversimplify the reality. The findings contribute to the ongoing discussion on environmental quality. Our results indicate the need and space for initiatives that address factors that influence air pollution in order to impede environmental degradation. However, due to the revealed heterogeneity among countries, the efforts should be tailored to the specific country’s characteristics.en
dc.description.abstractCiągłe pogarszanie się jakości środowiska naturalnego jest jednym z najważniejszych globalnych wyzwań, przed którymi stoi obecnie ludzkość. Celem niniejszego badania była analiza różnic i podobieństw między krajami UE–27 w zakresie emisji zanieczyszczeń powietrza (gazów cieplarnianych i gazów zakwaszających) oraz ich uwarunkowań techniczno-ekonomicznych, obejmujących czynniki ekonomiczne, energetyczne, instytucjonalne oraz poziom innowacyjności. Analizę przeprowadzono na podstawie dziewięciu wskaźników ilustrujących emisje zanieczyszczeń oraz piętnastu zmiennych reprezentujących determinanty zanieczyszczenia powietrza, wykorzystując ich średnie wartości z lat 2015–2020. Do zidentyfikowania podgrup krajów o podobnych wzorcach zastosowano analizę skupień. Otrzymane wyniki wskazują na znaczące zróżnicowanie krajów UE zarówno pod względem poziomów zanieczyszczenia powietrza, jak i determinant emisji. Przeprowadzona analiza ujawniła istotne różnice pomiędzy wschodnimi krajami UE, wykazującymi wspólne wzorce zanieczyszczeń powietrza i determinant emisji, oraz zachodnimi krajami UE, które cechowały się większym zróżnicowaniem pod względem analizowanych cech. W świetle uzyskanych wyników twierdzenie o zacofanych i zanieczyszczonych nowych państwach członkowskich UE w porównaniu z bardziej zaawansowanymi i nieskażonymi środowiskowo starymi krajami UE wydaje się nadmiernie upraszczać rzeczywistość. Nasze wyniki stanowią wkład w toczącą się dyskusję na temat jakości środowiska. Wskazują na potrzebę i przestrzeń do podjęcia działań w obszarze czynników wpływających na zanieczyszczenie powietrza w celu zahamowania degradacji środowiska naturalnego. Niemniej jednak, ze względu na ujawnioną heterogeniczność między krajami, wysiłki powinny być dostosowane do ich specyfiki.pl
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesComparative Economic Research. Central and Eastern Europe;3pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectair pollutionen
dc.subjectgreenhouse gas (GHG) emissionsen
dc.subjectacidifying gas (ACG) emissionsen
dc.subjectcluster analysisen
dc.subjectEuropean Union countriesen
dc.subjectzanieczyszczenie powietrzapl
dc.subjectemisja gazów cieplarnianychpl
dc.subjectemisja gazów zakwaszającychpl
dc.subjectanaliza skupieńpl
dc.subjectkraje Unii Europejskiejpl
dc.titleHeterogeneity in Air Pollution Levels and Their Techno‑economic Determinants: A Cluster Analysis of the EU–27en
dc.title.alternativeZróżnicowanie poziomu zanieczyszczenia powietrza i jego uwarunkowań techniczno-ekonomicznych: analiza skupień dla krajów UE–27pl
dc.typeArticle
dc.page.number47-66
dc.contributor.authorAffiliationDoryń, Wirginia - University of Lodz, Faculty of Economics and Sociology, Department of Economic Mechanisms Lodz, Polanden
dc.contributor.authorAffiliationWawrzyniak, Dorota - University of Lodz, Faculty of Economics and Sociology, Department of Economic Mechanisms Lodz, Polanden
dc.identifier.eissn2082-6737
dc.referencesAghel, B., Sahraie, S., Heidaryan, E. (2020), Carbon dioxide desorption from aqueous solutions of monoethanolamine and diethanolamine in a microchannel reactor, “Separation and Purification Technology”, 237, 116390, https://doi.org/10.1016/j.seppur.2019.116390en
dc.referencesArminen, H., Menegaki, A.N. (2019), Corruption, climate and the energy-environment growth nexus, “Energy Economics”, 80, pp. 621–634, https://doi.org/10.1016/j.eneco.2019.02.009en
dc.referencesAung, T.S., Fischer, T.B., Azmi, A.S. (2020), Are large-scale dams environmentally detrimental? Life-cycle environmental consequences of mega-hydropower plants in Myanmar, “The International Journal of Life Cycle Assessment”, 25, pp. 1749–1766, https://doi.org/10.1007/s11367-020-01795-9en
dc.referencesBai, C., Feng, C., Yan, H., Yi, X., Chen, Z., Wei, W. (2020), Will income inequality influence the abatement effect of renewable energy technological innovation on carbon dioxide emissions?, “Journal of Environmental Management”, 264, 110482, https://doi.org/10.1016/j.jenvman.2020.110482en
dc.referencesBekun, F.V., Gyamfi, B.A., Onifade, S.T., Agboola, M.O. (2021), Beyond the environmental Kuznets Curve in E7 economies: accounting for the combined impacts of institutional quality and renewables, “Journal of Cleaner Production”, 314, 127924, https://doi.org/10.1016/j.jclepro.2021.127924en
dc.referencesCheng, C., Ren, X., Wang, Z., Yan, C. (2019), Heterogeneous impacts of renewable energy and environmental patents on CO2 emission – Evidence from the BRIICS, “Science of the Total Environment”, 668, pp. 1328–1338, https://doi.org/10.1016/j.scitotenv.2019.02.063en
dc.referencesCheng, C., Ren, X., Dong, K., Dong, X., Wang, Z. (2021), How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression, “Journal of Environmental Management”, 280, 111818, https://doi.org/10.1016/j.jenvman.2020.111818en
dc.referencesChien, F., Anwar, A., Hsu, C.-C., Sharif, A., Razzaq, A., Sinha, A. (2021), The role of information and communication technology in encountering environmental degradation: Proposing an SDG framework for the BRICS countries, “Technology in Society”, 65, 101587, https://doi.org/10.1016/j.techsoc.2021.101587en
dc.referencesCifuentes-Faura, J. (2022), European Union policies and their role in combating climate change over the years, “Air Quality, Atmosphere & Health”, 15, pp. 1333–1340, https://doi.org/10.1007/s11869-022-01156-5en
dc.referencesConsolidated versions of the Treaty on European Union and the Treaty on the functioning of the European Union (2012/c 326/01), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:12012E/TXT (accessed: 28.04.2023).en
dc.referencesDu, K., Li, P., Yan, Z. (2019), Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data, “Technological Forecasting and Social Change”, 146, pp. 297–303, https://doi.org/10.1016/j.techfore.2019.06.010en
dc.referencesEhigiamusoe, K.U., Lean, H.H., Smyth, R. (2020), The moderating role of energy consumption in the carbon emissions-income nexus in middle-income countries, “Applied Energy”, 261, 114215, https://doi.org/10.1016/j.apenergy.2019.114215en
dc.referencesEuropean Environment Agency (2023), Europe’s air quality status 2023, https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed: 28.04.2023).en
dc.referencesEuropean Parliament (2018), Climate change in Europe: facts and figures, https://www.europarl.europa.eu/news/en/headlines/priorities/climate-change/20180703STO07123/climate-change-in-europe-facts-and-figures (accessed: 26.04.2023).en
dc.referencesEuropean Parliament (2023), Combating climate change, https://www.europarl.europa.eu/factsheets/en/sheet/72/combating-climate-change (accessed: 26.04.2023).en
dc.referencesEurostat (2023), Key figures on the EU in the world. 2023 edition, https://doi.org/10.2785/515035en
dc.referencesGholipour, H.F., Farzanegan, M.R. (2018), Institutions and the effectiveness of expenditures on environmental protection: evidence from Middle Eastern countries, “Constitutional Political Economy”, 29 (1), pp. 20–39, https://doi.org/10.1007/s10602-017-9246-xen
dc.referencesGovender, P., Sivakumar, V. (2020), Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019), “Atmospheric Pollution Research”, 11 (1), pp. 40–56, https://doi.org/10.1016/j.apr.2019.09.009en
dc.referencesGuterres, I. (2022), Enforcing Environmental Policy – the role of the European Union, “UNIO – EU Law Journal”, 8 (1), pp. 32–52, https://doi.org/10.21814/unio.8.1.4522en
dc.referencesHall, B.H. (2007), Measuring the returns to R&D: The depreciation problem, “NBER Working Paper”, 13473, https://doi.org/10.3386/w13473en
dc.referencesHastie, T., Tibshirani, R., Friedman, J.H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, https://doi.org/10.1007/978-0-387-84858-7en
dc.referencesIşık, C., Ongan, S., Özdemir, D. (2019), Testing the EKC hypothesis for ten US states: an application of heterogeneous panel estimation method, “Environmental Science and Pollution Research”, 26, pp. 10846–10853, https://doi.org/10.1007/s11356-019-04514-6en
dc.referencesJajuga, K., Walesiak, M. (2000), Standardisation of Data Set under Different Measurement Scales, [in:] R. Decker, W. Gaul (eds.), Classification and Information Processing at the Turn of the Millennium, Springer-Verlag, Berlin–Heidelberg, pp. 105–112, https://doi.org/10.1007/978-3-642-57280-7_11en
dc.referencesJinqiao, L., Maneengam, A., Saleem, F., Mukarram, S.S. (2022), Investigating the role of financial development and technology innovation in climate change: evidence from emerging seven countries, “Economic Research – Ekonomska Istraživanja”, 35 (1), pp. 3940–3960, https://doi.org/10.1080/1331677X.2021.2007152en
dc.referencesKarim, S., Appiah, M., Naeem, M.A., Lucey, B.M., Li, M. (2022), Modelling the role of institutional quality on carbon emissions in Sub-Saharan African countries, “Renewable Energy”, 198, pp. 213–221, https://doi.org/10.1016/j.renene.2022.08.074en
dc.referencesKaufmann, D., Kraay, A. (2023), Worldwide Governance Indicators, 2023 Update, https://www.govindicators.org (accessed: 27.10.2023).en
dc.referencesKaufmann, D., Kraay, A., Mastruzzi, M. (2010), The Worldwide Governance Indicators: Methodology and Analytical Issues, “World Bank Policy Research Working Paper”, 5430, https://ssrn.com/abstract=1682130 (accessed: 27.10.2023).en
dc.referencesKhan, H., Weili, L., Khan, I. (2022), Institutional quality, financial development and the influence of environmental factors on carbon emissions: evidence from a global perspective, “Environmental Science and Pollution Research”, 29 (9), pp. 13356–13368, https://doi.org/10.1007/s11356-021-16626-zen
dc.referencesKula, F., Ünlü, F. (2019), Ecological Innovation Efforts and Performances: An Empirical Analysis, [in]: M. Shahbaz, D. Balsalobre (eds.), Energy and Environmental Strategies in the Era of Globalization, Springer, Cham, pp. 221–250, https://doi.org/10.1007/978-3-030-06001-5_9en
dc.referencesLingyan, M., Zhao, Z., Malik, H.A., Razzaq, A., An, H., Hassan, M. (2022), Asymmetric impact of fiscal decentralization and environmental innovation on carbon emissions: Evidence from highly decentralized countries, “Energy & Environment”, 33 (4), pp. 752–782, https://doi.org/10.1177/0958305X211018453en
dc.referencesLiu, X., Bae, J. (2018), Urbanization and industrialization impact of CO2 emissions in China, “Journal of Cleaner Production”, 172, pp. 178–186, https://doi.org/10.1016/j.jclepro.2017.10.156en
dc.referencesMehmood, U., Tariq, S., Ul-Haq, Z., Meo, M.S. (2021), Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach, “Environmental Science and Pollution Research”, 28, pp. 10167–10174, https://doi.org/10.1007/s11356-020-11293-yen
dc.referencesNielsen, F. (2016), Introduction to HPC with MPI for Data Science, Springer, Cham, https://doi.org/10.1007/978-3-319-21903-5en
dc.referencesOECD (2008), Handbook on Constructing Composite Indicators: Methodology and User Guide, OECD Publishing, Paris, https://doi.org/10.1787/9789264043466-enen
dc.referencesOngan, S., Isik, C., Ozdemir, D. (2020), Economic growth and environmental degradation: evidence from the US case environmental Kuznets curve hypothesis with application of decomposition, “Journal of Environmental Economics and Policy”, 10 (1), pp. 14–21, https://doi.org/10.1080/21606544.2020.1756419en
dc.referencesPiva, M., Vivarelli, M. (2018), Technological change and employment: is Europe ready for the challenge?, “Eurasian Business Review”, 8 (1), pp. 13–32, https://doi.org/10.1007/s40821-017-0100-xen
dc.referencesRegulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No. 401/2009 and (EU) 2018/1999 (‘European Climate Law’), https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32021R1119 (accessed: 27.04.2023).en
dc.referencesShan, S., Genç, S.Y., Kamran, H.W., Dinca, G. (2021), Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey, “Journal of Environmental Management”, 294, 113004, https://doi.org/10.1016/j.jenvman.2021.113004en
dc.referencesSingh, A., Agrawal, M. (2008), Acid rain and its ecological consequences, “Journal of Environmental Biology”, 29 (1), pp. 15–24.en
dc.referencesWang, Q., Yang, T., Li, R. (2023), Does income inequality reshape the environmental Kuznets curve (EKC) hypothesis? A nonlinear panel data analysis, “Environmental Research”, 216, 114575, https://doi.org/10.1016/j.envres.2022.114575en
dc.referencesWang, S., Zeng, J., Liu, X. (2019), Examining the multiple impacts of technological progress on CO2 emissions in China: A panel quantile regression approach, “Renewable and Sustainable Energy Reviews”, 103, pp. 140–150, https://doi.org/10.1016/j.rser.2018.12.046en
dc.referencesWawrzyniak, D., Doryń, W. (2020), Does the quality of institutions modify the economic growth-carbon dioxide emissions nexus? Evidence from a group of emerging and developing countries, “Economic Research – Ekonomska Istraživanja”, 33 (1), pp. 124–144, https://doi.org/10.1080/1331677X.2019.1708770en
dc.referencesWeina, D., Gilli, M., Mazzanti, M., Nicolli, F. (2016), Green inventions and greenhouse gas emission dynamics: a close examination of provincial Italian data, “Environmental Economics and Policy Studies”, 18 (2), pp. 247–263, https://doi.org/10.1007/s10018-015-0126-1en
dc.referencesWorld Health Organization (2021), WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide, Geneva, https://apps.who.int/iris/handle/10665/345329 (accessed: 27.10.2023).en
dc.referencesWu, W.L. (2017), Institutional Quality and Air Pollution: International Evidence, “International Journal of Business and Economics”, 16 (1), pp. 49–74, https://ijbe.fcu.edu.tw/past_issues/NO.16-1/pdf/vol_16-1-4.pdf (accessed: 18.04.2023).en
dc.referencesYildirim, J., Alpaslan, B., Eker, E.E. (2021), The role of social capital in environmental protection efforts: Evidence from Turkey, “Journal of Applied Statistics”, 48 (13–15), pp. 2626–2642, https://doi.org/10.1080/02664763.2020.1843609en
dc.referencesZhang, Y.-J., Liu, Z., Zhang, H., Tan, T.-D. (2014), The impact of economic growth, industrial structure and urbanization on carbon emission intensity in China, “Natural Hazards”, 73, pp. 579–595, https://doi.org/10.1007/s11069-014-1091-xen
dc.referencesZheng, Y.M., Lv, Q., Wang, Y.D. (2022), Economic development, technological progress, and provincial carbon emissions intensity: empirical research based on the threshold panel model, “Applied Economics”, 54 (30), pp. 3495–3504, https://doi.org/10.1080/00036846.2021.2009760en
dc.contributor.authorEmailDoryń, Wirginia - wirginia.doryn@uni.lodz.pl
dc.contributor.authorEmailWawrzyniak, Dorota - dorota.wawrzyniak@uni.lodz.pl
dc.identifier.doi10.18778/1508-2008.27.21
dc.relation.volume27


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0