Pokaż uproszczony rekord

dc.contributor.authorKupś, Leonard
dc.contributor.authorChlebowski, Szymon
dc.date.accessioned2024-09-30T13:40:18Z
dc.date.available2024-09-30T13:40:18Z
dc.date.issued2024-05-20
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/53269
dc.description.abstractWe study natural deduction systems for a fragment of intuitionistic logic with propositional identity from the point of view of proof-theoretic semantics. We argue that the identity connective is a natural operator to be treated under the elimination rules as basic approach.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectintuitionistic Logicen
dc.subjectnon-Fregean logicen
dc.subjectproof-theoretic semanticsen
dc.titleMeaning is Use: the Case of Propositional Identityen
dc.typeArticle
dc.page.number275-299
dc.contributor.authorAffiliationKupś, Leonard - Adam Mickiewicz University in Poznań, Poland Department Psychology and Cognitive Scienceen
dc.contributor.authorAffiliationChlebowski, Szymon - Adam Mickiewicz University in Poznań, Poland Department Psychology and Cognitive Scienceen
dc.identifier.eissn2449-836X
dc.referencesS. L. Bloom, R. Suszko, Investigations into the Sentential Calculus with Identity, Notre Dame Journal of Formal Logic, vol. 13(3) (1972), pp. 289–308, DOI: https://doi.org/10.1305/ndjfl/1093890617en
dc.referencesS. Chlebowski, M. Gawek, A. Tomczyk, Natural Deduction Systems for Intuitionistic Logic with Identity, Studia Logica, vol. 110(6) (2022), pp. 1381– 1415, DOI: https://doi.org/10.1007/s11225-022-09995-0en
dc.referencesS. Chlebowski, D. Leszczy´nska-Jasion, An investigation into intuitionistic logic with identity, Bulletin of the Section of Logic, vol. 48(4) (2019), pp. 259–283, DOI: https://doi.org/10.18778/0138-0680.48.4.02en
dc.referencesM. Dummett, The logical basis of metaphysics, Harvard University Press, Cambridge, Mass. (1991)en
dc.referencesN. Francez, On the notion of canonical derivations from open assumptions and its role in proof-theoretic semantics, Review of Symbolic Logic, vol. 8 (2015), pp. 296–305, DOI: https://doi.org/10.1017/S1755020315000027en
dc.referencesN. Francez, Proof-theoretic Semantics, vol. 57 of Studies in Logic, College Publications, Rickmansworth (2015)en
dc.referencesN. Francez, Views of proof-theoretic semantics: Reified proof-theoretic meanings, Journal of Logic and Computation, vol. 26 (2016), pp. 479–494, DOI: https://doi.org/10.1093/logcom/exu035en
dc.referencesG. Gentzen, Investigations into logical deductions, American Philosophical Quarterly, vol. 1(4) (1964), pp. 288–306, URL: http://www.jstor.org/stable/20009142en
dc.referencesA. Klev, The harmony of identity, Journal of Philosophical Logic, vol. 48(5) (2019), pp. 867–884, DOI: https://doi.org/10.1007/s10992-018-09499-0en
dc.referencesP. Milne, Inversion principles and introduction rules, [in:] H. Wansing (ed.), Dag Prawitz on Proofs and Meaning, Springer, Cham (2013), pp. 189– 224, DOI: https://doi.org/10.1007/978-3-319-11041-7_8en
dc.referencesS. Negri, J. von Plato, Proof Analysis. A Contribution to Hilbert’s Last Problem, Cambridge University Press, Cambridge (2011), DOI: https://doi.org/10.1017/CBO9781139003513en
dc.referencesD. Prawitz, On the idea of a general proof theory, Synthese, (1974), pp. 63–77, DOI: https://doi.org/10.1007/BF00660889en
dc.referencesS. Read, Identity and harmony, Analysis, vol. 64(2) (2004), pp. 113–119, DOI: https://doi.org/10.1093/analys/64.2.113en
dc.referencesP. Schroeder-Heister, Validity Concepts in Proof-theoretic Semantics, Synthese, vol. 148 (2006), pp. 525–571, DOI: https://doi.org/10.1007/s11229-004-6296-1en
dc.referencesP. Schroeder-Heister, Proof Theoretical Validity Based on Elimination Rules, [in:] E. H. Haeusler, W. de Campos Sanz, B. Lopez (eds.), Why is this a Proof? Festschrift for Luiz Carlos Pereira, College Publications, Rickmansworth (2015), pp. 159–176.en
dc.referencesP. Schroeder-Heister, Proof-Theoretic Semantics, [in:] E. N. Zalta, U. Nodelman (eds.), The Stanford Encyclopedia of Philosophy, fall 2023 ed., Metaphysics Research Lab, Stanford University (2023), URL: https://plato.stanford.edu/archives/spr2018/entries/proof-theoretic-semantics/en
dc.contributor.authorEmailKupś, Leonard - leonard.kups@gmail.com
dc.contributor.authorEmailChlebowski, Szymon - szymon.chlebowski@amu.edu.pl
dc.identifier.doi10.18778/0138-0680.2024.05
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0