dc.contributor.author | Rasga, João | |
dc.contributor.author | Sernadas, Cristina | |
dc.date.accessioned | 2024-09-30T13:40:19Z | |
dc.date.available | 2024-09-30T13:40:19Z | |
dc.date.issued | 2024-06-05 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/53271 | |
dc.description.abstract | We address the problem of combining intuitionistic and S4 modal logic in a non-collapsing way inspired by the recent works in combining intuitionistic and classical logic. The combined language includes the shared constructors of both logics namely conjunction, disjunction and falsum as well as the intuitionistic implication, the classical implication and the necessity modality. We present a Gentzen calculus for the combined logic defined over a Gentzen calculus for the host S4 modal logic. The semantics is provided by Kripke structures. The calculus is proved to be sound and complete with respect to this semantics. We also show that the combined logic is a conservative extension of each component. Finally we establish that the Gentzen calculus for the combined logic enjoys cut elimination. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | combination of logics | en |
dc.subject | intuitionistic logic | en |
dc.subject | modal logic | en |
dc.subject | cut elimination | en |
dc.title | On Combining Intuitionistic and S4 Modal Logic | en |
dc.type | Article | |
dc.page.number | 321-344 | |
dc.contributor.authorAffiliation | Rasga, João - Instituto de Telecomunicações, Basic Sciences and Enabling Technologies Campus Universitário de Santiago; Universidade de Lisboa, Instituto Superior Técnico, Dep. Matemática | en |
dc.contributor.authorAffiliation | Sernadas, Cristina - Instituto de Telecomunicações, Basic Sciences and Enabling Technologies Campus Universitário de Santiago; Universidade de Lisboa, Instituto Superior Técnico, Dep. Matemática | en |
dc.identifier.eissn | 2449-836X | |
dc.references | L. F. del Cerro, A. Herzig, Combining classical and intuitionistic logic, [in:] F. Baader, K. U. Schulz (eds.), Frontiers of Combining Systems, Springer (1996), pp. 93–102, DOI: https://doi.org/10.1007/978-94-009-0349-4_4 | en |
dc.references | G. Dowek, On the definition of the classical connectives and quantifiers, [in:] Why is this a Proof? Festschrift for Luiz Carlos Pereira, College Publications (2015), pp. 228–238. | en |
dc.references | D. Gabbay, Fibred semantics and the weaving of logics: Modal and intuitionistic logics, The Journal of Symbolic Logic, vol. 61(4) (1996), pp. 1057–1120, DOI: https://doi.org/10.2307/2275807 | en |
dc.references | D. Gabbay, Fibring Logics, Oxford University Press, Oxford (1999), DOI: https://doi.org/10.1093/oso/9780198503811.001.0001 | en |
dc.references | J.-Y. Girard, On the unity of logic, Annals of Pure and Applied Logic, vol. 59(3) (1993), pp. 201–217, DOI: https://doi.org/10.1016/0168-0072(93)90093-S | en |
dc.references | K. Gödel, Collected Works. Vol. I, Oxford University Press (1986). | en |
dc.references | S. Marin, L. C. Pereira, E. Pimentel, E. Sales, A pure view of ecumenical modalities, [in:] Logic, Language, Information, and Computation, vol. 13038 of Lecture Notes in Computer Science, Springer (2021), pp. 388– 407, DOI: https://doi.org/10.1007/978-3-030-88853-4_24 | en |
dc.references | J. C. C. McKinsey, A. Tarski, Some theorems about the sentential calculi of Lewis and Heyting, The Journal of Symbolic Logic, vol. 13 (1948), pp. 1–15, DOI: https://doi.org/10.2307/2268135 | en |
dc.references | S. Negri, J. von Plato, Structural Proof Theory, Cambridge University Press, Cambridge (2001), DOI: https://doi.org/10.1017/CBO9780511527340 | en |
dc.references | L. C. Pereira, R. O. Rodriguez, Normalization, Soundness and Completeness for the Propositional Fragment of Prawitz’ Ecumenical System, Revista Portuguesa de Filosofia, vol. 73(3/4) (2017), pp. 1153–1168, DOI: https://doi.org/10.17990/RPF/2017_73_3_1153 | en |
dc.references | E. Pimentel, L. C. Pereira, V. de Paiva, An ecumenical notion of entailment, Synthese, vol. 198(suppl. 22) (2021), pp. S5391–S5413, DOI: https://doi.org/10.1007/s11229-019-02226-5 | en |
dc.references | D. Prawitz, Classical versus intuitionistic logic, [in:] Why is this a Proof? Festschrift for Luiz Carlos Pereira, College Publications (2015), pp. 15–32. | en |
dc.references | D. Prawitz, P.-E. Malmn¨as, A survey of some connections between classical, intuitionistic and minimal logic, [in:] Contributions to Mathematical Logic Colloquium, North-Holland, Amsterdam (1968), pp. 215–229, DOI: https://doi.org/10.1016/S0049-237X(08)70527-5 | en |
dc.references | J. Rasga, C. Sernadas, Decidability of Logical Theories and their Combination, Birkh¨auser, Basel (2020), DOI: https://doi.org/10.1007/978-3-030-56554-1 | en |
dc.references | V. Rybakov, Admissibility of Logical Inference Rules, North-Holland, Amsterdam (1997), URL: https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/136/suppl/C | en |
dc.references | C. Sernadas, J. Rasga, W. A. Carnielli, Modulated fibring and the collapsing problem, The Journal of Symbolic Logic, vol. 67(4) (2002), pp. 1541–1569, DOI: https://doi.org/10.2178/jsl/1190150298 | en |
dc.references | A. S. Troelstra, H. Schwichtenberg, Basic Proof Theory, Cambridge University Press, Cambridge (2000), DOI: https://doi.org/10.1017/CBO9781139168717 | en |
dc.contributor.authorEmail | Rasga, João - joao.rasga@tecnico.ulisboa.pt | |
dc.contributor.authorEmail | Sernadas, Cristina - cristina.sernadas@tecnico.ulisboa.pt | |
dc.identifier.doi | 10.18778/0138-0680.2024.11 | |
dc.relation.volume | 53 | |