Pokaż uproszczony rekord

dc.contributor.authorOlszewski, Adam
dc.date.accessioned2024-09-30T13:40:20Z
dc.date.available2024-09-30T13:40:20Z
dc.date.issued2024-04-23
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/53273
dc.description.abstractThe starting point of this paper is the empirically determined ability to reason in natural language by employing probable sentences. A sentence is understood to be logically probable if its schema, expressed as a formula in the language of classical propositional calculus, takes the logical value of truth for the majority of Boolean valuations, i.e., as a logically probable formula. Then, the formal system P is developed to encode the set of these logically probable formulas. Based on natural semantics, a strong completeness theorem for P is proved. Alternative notions of consequence for logically probable sentences are also considered.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;3en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectprobable sentencesen
dc.subjectmajorityen
dc.subjectlogically probable formulaen
dc.subjectBoolean valuationen
dc.titleAbout Logically Probable Sentencesen
dc.typeArticle
dc.page.number365-397
dc.contributor.authorAffiliationPontifical University of John Paul II in Cracow, Faculty of Philosophyen
dc.identifier.eissn2449-836X
dc.referencesR. Fagin, Probabilities on Finite Models, The Journal of Symbolic Logic, vol. 41(1) (1976), pp. 50–58, DOI: https://doi.org/10.2307/2272945en
dc.referencesD. Grossi, G. Pigozzi, Symbolic Logic and Its Applications, Longmans, Green, and Co., London (1906), URL: https://archive.org/details/symboliclogicits00macc/en
dc.referencesD. Grossi, G. Pigozzi, Judgment aggregation: A primer, Synthesis Lectures on Artificial Intelligence and Machine Learning, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-031-01568-7en
dc.referencesH. Hi˙z, Extendible Sentential Calculus, The Journal of Symbolic Logic, vol. 24(3) (1959), pp. 193–202, DOI: https://doi.org/10.2307/2963776en
dc.referencesD. Makinson, Bridges from Classical to Nonmonotonic Logic, College Publications, Rickmansworth (1906).en
dc.referencesA. Olszewski, Kilka uwag na temat demokracji (A Few Remarks on Democracy), Logos i Ethos, vol. 1(7) (1999), pp. 116–122.en
dc.referencesR. Takemura, Logic and Majority Voting, Journal of Philosophical Logic, vol. 51 (2022), pp. 347–382, DOI: https://doi.org/10.1007/s10992-021-09631-7en
dc.referencesR. Wójcicki, Theory of Logical Calculi, Springer, Dordrecht (1988), DOI: https://doi.org/10.1007/978-94-015-6942-2en
dc.contributor.authorEmailadam.olszewski@upjp2.edu.pl
dc.identifier.doi10.18778/0138-0680.2024.04
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0