dc.contributor.author | Olszewski, Adam | |
dc.date.accessioned | 2024-09-30T13:40:20Z | |
dc.date.available | 2024-09-30T13:40:20Z | |
dc.date.issued | 2024-04-23 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/53273 | |
dc.description.abstract | The starting point of this paper is the empirically determined ability to reason in natural language by employing probable sentences. A sentence is understood to be logically probable if its schema, expressed as a formula in the language of classical propositional calculus, takes the logical value of truth for the majority of Boolean valuations, i.e., as a logically probable formula. Then, the formal system P is developed to encode the set of these logically probable formulas. Based on natural semantics, a strong completeness theorem for P is proved. Alternative notions of consequence for logically probable sentences are also considered. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;3 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | probable sentences | en |
dc.subject | majority | en |
dc.subject | logically probable formula | en |
dc.subject | Boolean valuation | en |
dc.title | About Logically Probable Sentences | en |
dc.type | Article | |
dc.page.number | 365-397 | |
dc.contributor.authorAffiliation | Pontifical University of John Paul II in Cracow, Faculty of Philosophy | en |
dc.identifier.eissn | 2449-836X | |
dc.references | R. Fagin, Probabilities on Finite Models, The Journal of Symbolic Logic, vol. 41(1) (1976), pp. 50–58, DOI: https://doi.org/10.2307/2272945 | en |
dc.references | D. Grossi, G. Pigozzi, Symbolic Logic and Its Applications, Longmans, Green, and Co., London (1906), URL: https://archive.org/details/symboliclogicits00macc/ | en |
dc.references | D. Grossi, G. Pigozzi, Judgment aggregation: A primer, Synthesis Lectures on Artificial Intelligence and Machine Learning, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-031-01568-7 | en |
dc.references | H. Hi˙z, Extendible Sentential Calculus, The Journal of Symbolic Logic, vol. 24(3) (1959), pp. 193–202, DOI: https://doi.org/10.2307/2963776 | en |
dc.references | D. Makinson, Bridges from Classical to Nonmonotonic Logic, College Publications, Rickmansworth (1906). | en |
dc.references | A. Olszewski, Kilka uwag na temat demokracji (A Few Remarks on Democracy), Logos i Ethos, vol. 1(7) (1999), pp. 116–122. | en |
dc.references | R. Takemura, Logic and Majority Voting, Journal of Philosophical Logic, vol. 51 (2022), pp. 347–382, DOI: https://doi.org/10.1007/s10992-021-09631-7 | en |
dc.references | R. Wójcicki, Theory of Logical Calculi, Springer, Dordrecht (1988), DOI: https://doi.org/10.1007/978-94-015-6942-2 | en |
dc.contributor.authorEmail | adam.olszewski@upjp2.edu.pl | |
dc.identifier.doi | 10.18778/0138-0680.2024.04 | |
dc.relation.volume | 53 | |