Pokaż uproszczony rekord

dc.contributor.authorCichocki, Piotr
dc.contributor.authorBaranowski, Mariusz
dc.date.accessioned2024-12-03T07:17:58Z
dc.date.available2024-12-03T07:17:58Z
dc.date.issued2024-11-30
dc.identifier.urihttp://hdl.handle.net/11089/53847
dc.description.abstractConsidering the dynamically evolving realms of social sciences influenced by network technologies and digital humanities, it is crucial to examine the adequacy of sociological data analysis methodologies in these new conditions. The availability of extensive digitized datasets not only poses a challenge to “classical” analysis methods developed under different circumstances and for different purposes, but also raises the question of whether the traditional demarcation between quantitative and qualitative methods, marked by a clear boundary, remains relevant in the era of Big Data. In this paper, based on topic modeling utilising Latent Dirichlet Allocation (LDA), we argue that quantitative methods (probabilistic statistical models) are not merely complementary or a starting point for qualitative analyses (the standard approach), but, rather, constitute an integral part of them. This thesis is illustrated through a case study involving the identification of themes within a dataset of 17,278 articles published in Web-of-Science-indexed journals between 1992 and 2020, focusing on social welfare. This empirical case study also serves to formulate meta-theoretical observations regarding the “cohesion” of quantitative and qualitative methods in the context of machine learning and natural language processing.en
dc.description.abstractBiorąc pod uwagę dynamicznie rozwijające się obszary nauk społecznych uwarunkowanych technologiami sieciowymi oraz humanistyki cyfrowej (ang. Digital Humanities), warto przeanalizować adekwatność socjologicznych metodologii analizy danych w tych nowych warunkach. Dostępność dużych zbiorów zdigitalizowanych danych stanowi nie tylko wyzwanie dla „klasycznych” metod analizy, które opracowane zostały w innych warunkach i do innych celów. Jeszcze ważniejsza kwestia dotyczy tego, czy podział na metody ilościowe i jakościowe, między którymi istnieje wyraźna linia demarkacyjna, ma sens w obliczu Big Data. W niniejszym artykule, na podstawie modelowania tematycznego (ang. topic modeling), opartego na LDA (ang. Latent Dirichlet Allocation), autorzy stawiają tezę, że ilościowe metody (probabilistyczne modele statystyczne) nie stanowią uzupełnienia lub punktu wyjścia do analiz jakościowych (standardowe podejście), lecz ich integralną część. Teza ta zostanie zilustrowana przykładem wyznaczenia tematów w obrębie zbioru 17 278 artykułów na temat dobrobytu społecznego, opublikowanych w czasopismach indeksowanych w bazie Web of Science w latach 1992–2020. To empiryczne studium przypadku posłuży także do sformułowania uwag metateoretycznych na temat „kohezji” metod ilościowych i jakościowych w perspektywie uczenia maszynowego (ang. machine learning) i przetwarzania języka naturalnego (ang. natural language processing – NLP).pl
dc.language.isopl
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesPrzegląd Socjologii Jakościowej;4pl
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjecttopic modelingen
dc.subjectmethodology of sociologyen
dc.subjectsocial welfareen
dc.subjectmachine learningen
dc.subjectNatural Language Processingen
dc.subjectmodelowanie tematycznepl
dc.subjectmetodologia socjologiipl
dc.subjectdobrobyt społeczny,pl
dc.subjectuczenie maszynowepl
dc.subjectprzetwarzanie języka naturalnegopl
dc.titleModelowanie tematyczne w socjologii na przykładzie dobrobytu społecznego: wyzwania metodologiczne i komponent ludzkipl
dc.title.alternativeTopic Modeling in Sociology Using Social Welfare as an Example: Methodological Challenges and the Human Componenten
dc.typeArticle
dc.page.number98-117
dc.contributor.authorAffiliationCichocki, Piotr - Uniwersytet im. Adama Mickiewicza w Poznaniupl
dc.contributor.authorAffiliationBaranowski, Mariusz - Uniwersytet im. Adama Mickiewicza w Poznaniupl
dc.identifier.eissn1733-8069
dc.referencesAdler Matthew D. (2019), Measuring Social Welfare: An Introduction, Oxford: Oxford University Press.pl
dc.referencesAkhmedov Farkhod, Abdusalomov Akmalbek, Makhmudov Fazliddin, Cho Young I. (2021), LDA-Based Topic Modeling Sentiment Analysis Using Topic/Document/Sentence (TDS) Model, „Applied Sciences”, vol. 11(23), 11091, https://doi.org/10.3390/app112311091pl
dc.referencesAltbach Philip G., Wit Hans de (2018), Too much academic research is being published, „University World News”, 7 September, https://www.universityworldnews.com/post.php?story=20180905095203579 [dostęp: 24.09.2024].pl
dc.referencesAnaniadou Sophia, Rea Brian, Okazaki Naoaki, Procter Rob, Thomas James (2009), Supporting Systematic Reviews Using Text Mining, „Social Science Computer Review”, vol. 27(4), s. 509–523, https://doi.org/10.1177/0894439309332293pl
dc.referencesAsmussen Claus Boye, Møller Charles (2019), Smart literature review: a practical topic modelling approach to exploratory literature review, „Journal of Big Data”, vol. 6(93), s. 1–18, https://doi.org/10.1186/s40537-019-0255-7pl
dc.referencesBaranowski Mariusz (2022), Epistemological aspect of topic modelling in the social sciences: Latent Dirichlet Allocation, „Przegląd Krytyczny”, vol. 4(1), s. 7–16, https://doi.org/10.14746/pk.2022.4.1.1pl
dc.referencesBaranowski Mariusz, Cichocki Piotr (2021), Good and bad sociology: does topic modelling make a difference?, „Society Register”, vol. 5(4), s. 7–22, https://doi.org/10.14746/sr.2021.5.4.01pl
dc.referencesBaranowski Mariusz, Cichocki Piotr, McKinley Jim (2023), Social welfare in the light of topic modelling, „Sociology Compass”, vol. 17(8), e13086, https://doi.org/10.1111/soc4.13086pl
dc.referencesBattista Daniele (2024), Political communication in the age of artificial intelligence: an overview of deepfakes and their implications, „Society Register”, vol. 8(2), s. 7–24, https://doi.org/10.14746/sr.2024.8.2.01pl
dc.referencesBlei David M., Ng Andrew Y., Jordan Michael I. (2003), Latent Dirichlet Allocation, „Journal of Machine Learning Research”, vol. 3, s. 993–1022.pl
dc.referencesCarlsen Hjalmar, Ralund Snore (2022), Computational grounded theory revisited: From computer-led to computer-assisted text analysis, „Big Data & Society”, vol. 9(1), https://doi.org/10.1177/20539517221080146pl
dc.referencesCartwright Dorwin P. (1965), Zastosowania analizy treści, [w:] Stefan Nowak (red.), Metody badań socjologicznych, Warszawa: Państwowe Wydawnictwo Naukowe, s. 149–161.pl
dc.referencesCiziceno Marco (2024), Who will take care of them? A reflection on Southern European welfare regimes, „Society Register”, vol. 8(1), s. 27–42, https://doi.org/10.14746/sr.2024.8.1.02pl
dc.referencesDiMaggio Paul, Nag Manish, Blei David (2013), Exploiting affinities between topic modeling and the sociological perspective on culture: Application to newspaper coverage of US government arts funding, „Poetics”, vol. 41(6), s. 570–606, https://doi.org/10.1016/j.poetic.2013.08.004pl
dc.referencesDuan Jingyuan, Tian Ling, Mao Jianqiao, Li Jiaxin (2022), Optimal social welfare: A many-to-many data transaction mechanism based on double auctions, „Digital Communications and Networks”, vol. 9(5), s. 1230–1241, https://doi.org/10.1016/j.dcan.2022.04.020pl
dc.referencesEvans James A., Aceves Pedro (2016), Machine Translation: Mining Text for Social Theory, „Annual Review of Sociology”, vol. 42, s. 21–50, https://doi.org/10.1146/annurev-soc-081715-074206pl
dc.referencesForder Anthony, Caslin Terry, Ponton Geoffrey, Walklate Sandra (2019), Theories of welfare, London: Routledge.pl
dc.referencesHirschberg Julia, Manning Christopher D. (2015), Advances in natural language processing, „Science”, vol. 349(6245), s. 261–266, https://doi.org/10.1126/science.aaa8685pl
dc.referencesIsoaho Karoliina, Gritsenko Daria, Mäkelä Eetu (2021), Topic Modeling and Text Analysis for Qualitative Policy Research, „Policy Studies Journal”, vol. 49, s. 300–324, https://doi.org/10.1111/psj.12343pl
dc.referencesJabkowski Piotr, Cichocki Piotr, Kołczyńska Marta (2023), Multi-Project Assessments of Sample Quality in Cross-National Surveys: The Role of Weights in Applying External and Internal Measures of Sample Bias, „Journal of Survey Statistics and Methodology”, vol. 11(2), s. 316–339, https://doi.org/10.1093/jssam/smab027pl
dc.referencesJacobs Thomas, Tschötschel Robin (2019), Topic models meet discourse analysis: a quantitative tool for a qualitative approach, „International Journal of Social Research Methodology”, vol. 22(5), s. 469–485, https://doi.org/10.1080/13645579.2019.1576317pl
dc.referencesJakubowska Honorata, Cichocki Piotr, Jabkowski Piotr (2023), References to sex and gender differences in the social sciences: analysis of journal publication records (1971–2021), „Ruch Prawniczy, Ekonomiczny i Socjologiczny”, vol. 85(4), s. 275–297, https://doi.org/10.14746/rpeis.2023.85.4.14pl
dc.referencesJäger Friedrich, Wiskind Ora (1991), Culture or Society? The Significance of Max Weber’s Thought for Modern Cultural History, „History and Memory”, vol. 3(2), s. 115–140, http://www.jstor.org/stable/25618620pl
dc.referencesKoseoglu Suzan, Bozkurt Aras (2018), An exploratory literature review on open educational practices, „Distance Education”, vol. 39(4), s. 441–461, https://doi.org/10.1080/01587919.2018.1520042pl
dc.referencesLasswell Harold D. (1927), The Theory of Political Propaganda, „The American Political Science Review”, vol. 21(3), s. 627–631, https://doi.org/10.2307/1945515pl
dc.referencesLewis Seth C., Zamith Rodrigo, Hermida Alfred (2013), Content Analysis in an Era of Big Data: A Hybrid Approach to Computational and Manual Methods, „Journal of Broadcasting & Electronic Media”, vol. 57(1), s. 34–52, https://doi.org/10.1080/08838151.2012.761702pl
dc.referencesLinares Julio, Cabaña Gabriela (2022), Towards an ecology of care: basic income after the nation-state, „Society Register”, vol. 6(3), s. 29–56, https://doi.org/10.14746/sr.2022.6.3.03pl
dc.referencesMayntz Renate, Holm Kurt, Hübner Peter (1976), Wprowadzenie do metod socjologii empirycznej, Warszawa: Państwowe Wydawnictwo Naukowe.pl
dc.referencesMidgley James (1997), Social Welfare in Global Context, London: Sage Publications.pl
dc.referencesMohr John W., Bogdanov Petko (2013), Introduction – Topic models: What they are and why they matter, „Poetics”, vol. 41(6), s. 545–569, https://doi.org/10.1016/j.poetic.2013.10.001pl
dc.referencesNaskar Debashis, Mokaddem Sidahmed, Rebollo Miguel, Onaindia Eva (2016), Sentiment analysis in social networks through topic modeling, [w:] Nicoletta Calzolari, Khalid Choukri, Thierry Declerck, Sara Goggi, Marko Grobelnik, Bente Maegaard, Joseph Mariani, Helene Mazo, Asuncion Moreno, Jan Odijk, Stelios Piperidis (eds.), Proceedings of the Tenth International Conference on Language Resources and Evaluation (LREC’16), Portorož: European Language Resources Association, s. 46–53.pl
dc.referencesNelson Laura (2020), Computational Grounded Theory: A Methodological Framework, „Sociological Methods & Research”, vol. 49(1), s. 3–42, https://doi.org/10.1177/0049124117729703pl
dc.referencesNesterova Iana (2023), Responsibilities towards places in a degrowth society: How firms can become more responsible via embracing deep ecology, „Society Register”, vol. 7(1), s. 53–74, https://doi.org/10.14746/sr.2023.7.1.03pl
dc.referencesPääkkönen Juho, Ylikoski Petri (2021), Humanistic interpretation and machine learning, „Synthese”, vol. 199, s. 1461–1497, https://doi.org/10.1007/s11229-020-02806-wpl
dc.referencesPraag Bernard M.S. van (1989), The Relativity of the Welfare Concept, „World Institute for Development Research of the United Nations University, Working Paper”, no. 69, s. 1–43.pl
dc.referencesR Core Team (2022), _R: A Language and Environment for Statistical Computing_, „R Foundation for Statistical Computing”, Vienna, https://www.R-project.org/ [dostęp: 24.09.2024].pl
dc.referencesRoberts Margaret E., Stewart Brandon M., Tingley Dustin (2019), stm: An R Package for Structural Topic Models, „Journal of Statistical Software”, vol. 91(2), s. 1–40, https://doi.org/10.18637/jss.v091.i02pl
dc.referencesSilge Julia, Robinson David (2017), Text Mining with R: A Tidy Approach, Sebastopol: O’Reilly.pl
dc.referencesSnyder Hannah (2019), Literature review as a research methodology: An overview and guidelines, „Journal of Business Research”, vol. 104, s. 333–339, https://doi.org/10.1016/j.jbusres.2019.07.039pl
dc.referencesSyed Shaheen, Spruit Marco (2018), Selecting Priors for Latent Dirichlet Allocation, [w:] IEEE 12th International Conference on Semantic Computing (ICSC), Laguna Hills: IEEE s. 194–202, https://doi.org/10.1109/ICSC.2018.00035pl
dc.referencesThangaraj Muthuraman, Sivakami Muthusamy (2018), Text Classification Techniques: A Literature Review, „Interdisciplinary Journal of Information, Knowledge, and Management”, vol. 13, s. 117–135, https://doi.org/10.28945/4066pl
dc.referencesTimms Noel (1980), Social welfare: Why and how?, London: Routledge.pl
dc.referencesTitmuss Richard M. (1967), The Welfare Complex in a Changing Society, „The Milbank Memorial Fund Quarterly”, vol. 45(1), s. 9–23, https://doi.org/10.2307/3349045pl
dc.contributor.authorEmailCichocki, Piotr - piotr.cichocki@amu.edu.pl
dc.contributor.authorEmailBaranowski, Mariusz - mariusz.baranowski@amu.edu.pl
dc.identifier.doi10.18778/1733-8069.20.4.05
dc.relation.volume20


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0