dc.contributor.author | Pangsy‑Kania, Sylwia | |
dc.contributor.author | Biegańska, Justyna | |
dc.contributor.author | Flouros, Floros | |
dc.date.accessioned | 2025-01-07T13:37:01Z | |
dc.date.available | 2025-01-07T13:37:01Z | |
dc.date.issued | 2024-12-19 | |
dc.identifier.issn | 1508-2008 | |
dc.identifier.uri | http://hdl.handle.net/11089/54099 | |
dc.description.abstract | The deployment of alternatively fueled (AF) vehicles constitutes an important measure in meeting the European Union’s (EU’s) climate goals. The study aims to characterize and evaluate, in a comparative manner, the current stage of the adoption of AF passenger cars into the general (M1) passenger car fleet in the EU member states. The focal point of the study is the exploration of similarities and differences observed between the EU countries regarding the current structure of AF passenger car fleets, as well as development trends in this area. In this context, a clear scheme of “two speeds” emerges – parallel to the rapid diffusion of electric vehicles in the Nordic and Western European countries, the size and structure of the AF M1 vehicle stock remained largely unchanged in the Central‑European countries, with the dominant role of widely established liquified petroleum gas (LPG). The findings highlight the need to diversify the range of alternative fuels, which should be introduced gradually, in line with the classification proposed by the European Parliament and the Council. | en |
dc.description.abstract | Rozszerzenie floty pojazdów napędzanych paliwami alternatywnymi stanowi ważny instrument realizacji celów klimatycznych Unii Europejskiej. Celem badania jest scharakteryzowanie i ocena, w sposób porównawczy, obecnego etapu popularyzacji samochodów osobowych napędzanych paliwami alternatywnymi w państwach członkowskich UE. Punktem centralnym badania jest eksploracja podobieństw i różnic obserwowanych pomiędzy krajami unijnymi w odniesieniu do aktualnej struktury floty pojazdów napędzanych paliwami alternatywnymi oraz tendencji rozwojowych w tym zakresie. W tym kontekście zaobserwować można wyraźny schemat „dwóch prędkości” – równolegle do szybkiego rozpowszechniania pojazdów elektrycznych w krajach skandynawskich i zachodnioeuropejskich wielkość i struktura floty pojazdów napędzanych alternatywnie pozostała w dużej mierze niezmieniona w krajach Europy Środkowej, z wciąż dominującą rolą utrwalonego na tych rynkach skroplonego gazu płynnego (LPG). Wyniki badania podkreślają potrzebę dywersyfikacji paliw alternatywnych, które należy wprowadzać stopniowo, zgodnie z klasyfikacją zaproponowaną w dyrektywie 2014/94/UE Parlamentu Europejskiego i Rady. | pl |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Comparative Economic Research. Central and Eastern Europe;4 | pl |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | alternative fuels | en |
dc.subject | sustainable innovation | en |
dc.subject | sustainable development | en |
dc.subject | passenger car fleet | en |
dc.subject | EU–27 | en |
dc.subject | environment | en |
dc.subject | paliwa alternatywne | pl |
dc.subject | zrównoważone innowacje | pl |
dc.subject | zrównoważony rozwój | pl |
dc.subject | flota samochodów osobowych | pl |
dc.subject | UE–27 | pl |
dc.subject | środowisko | pl |
dc.title | Alternative Fuels as a Sustainable Innovation in Vehicle Fleet Across the EU–27: Diagnosis and Prospects for Development | en |
dc.title.alternative | Paliwa alternatywne jako zrównoważona innowacja we flocie pojazdów UE–27: diagnoza i perspektywy rozwoju | pl |
dc.type | Article | |
dc.page.number | 173-194 | |
dc.contributor.authorAffiliation | Pangsy‑Kania, Sylwia - University of Gdańsk, Faculty of Economics, Gdańsk | en |
dc.contributor.authorAffiliation | Biegańska, Justyna - Gdynia Maritime University, Faculty of Management and Quality Science | en |
dc.contributor.authorAffiliation | Flouros, Floros - Neapolis University, Department of History, Politics and International Studies | en |
dc.identifier.eissn | 2082-6737 | |
dc.references | Adomako, S., Nguyen, N.P. (2023), Co‑innovation behavior and sustainable innovation in competitive environments, “Sustainable Development”, 31 (3), pp. 1735–1747, https://doi.org/10.1002/sd.2479 | en |
dc.references | Alternative Fuels Data Center (n.d.), Alternative Fuels and Advanced Vehicles, https://afdc.energy.gov/fuels/ (accessed: 16.09.2023). | en |
dc.references | Alternative Fuels Data Center (n.d.), Ethanol Fuel Basics, https://afdc.energy.gov/fuels/ethanol_fuel_basics.html (accessed: 16.09.2023). | en |
dc.references | Alternative Fuels Data Center (n.d.), Hydrogen, https://afdc.energy.gov/fuels/hydrogen.html (accessed: 16.09.2023). | en |
dc.references | Alternative Fuels Data Center (n.d.), Natural Gas, https://afdc.energy.gov/fuels/natural_gas.html (accessed: 16.09.2023). | en |
dc.references | Alternative Fuels Data Center (n.d.), Propane Benefits and Considerations, https://afdc.energy.gov/fuels/propane_benefits.html (accessed: 16.09.2023). | en |
dc.references | Basiago, A.D. (1995), Methods of defining ‘sustainability’, “Sustainable Development”, 3 (3), pp. 109–119, https://doi.org/10.1002/sd.3460030302 | en |
dc.references | Breitkreuz, K., Menne, A., Kraft, A. (2014), New process for sustainable fuels and chemicals from bio‑based alcohols and acetone, “Biofuels, Bioproducts and Biorefining”, 8 (4), pp. 504–515, https://doi.org/10.1002/bbb.1484 | en |
dc.references | Cillo, V., Petruzzelli, A.M., Ardito, L., Del Giudice, M. (2019), Understanding sustainable innovation: A systematic literature review, “Corporate Social Responsibility and Environmental Management”, 26 (5), pp. 1012–1025, https://doi.org/10.1002/csr.1783 | en |
dc.references | DesJardins, J. (2015), Sustainability, [in:] Wiley Encyclopedia of Management, https://doi.org/10.1002/9781118785317.weom020212 | en |
dc.references | DHL (n.d.), Alternative fuels: What the future holds?, https://www.dhl.com/global‑en/delivered/sustainability/future‑of‑alternative‑fuels.html (accessed: 15.09.2023). | en |
dc.references | European Alternative Fuels Observatory (n.d.), About the European Alternative Fuels Observatory, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/about‑european‑alternative‑fuels‑observatory (accessed: 20.09.2023). | en |
dc.references | European Alternative Fuels Observatory (n.d.), Alternative fuels, https://alternative‑fuels‑observatory.ec.europa.eu/general‑information/alternative‑fuels (accessed: 5.10.2023). | en |
dc.references | European Alternative Fuels Observatory (2023), Road, https://alternative‑fuels‑observatory.ec.europa.eu/transport‑mode/road (accessed: 11.09.2023). | en |
dc.references | European Commission (2021), Proposal for a Regulation of the European Parliament and of the Council on the deployment of alternative fuels infrastructure, and repealing Directive 2014/94/EU of the European Parliament and of the Council, https://eur‑lex.europa.eu/resource.html?uri=cellar:dbb134db‑e575-11eb‑a1a5-01aa75ed71a1.0001.02/DOC_1&format=PDF (accessed: 18.09.2023). | en |
dc.references | European Council for an Energy Efficient Economy (2023), Effort Sharing Regulation, https://www.eceee.org/policy‑areas/product‑policy/effort‑sharing‑regulation/ (accessed: 3.10.2023). | en |
dc.references | European Environment Agency (2020), EC, 2020, “2050 long‑term strategy”, https://www.eea.europa.eu/policy‑documents/ec-2020-2050‑long‑term‑strategy (accessed: 20.09.2023). | en |
dc.references | Eurostat (2023), Passenger cars, by type of motor energy [ROAD_EQS_CARPDA], https://ec.europa.eu/eurostat/databrowser/view/road_eqs_carpda/default/table?lang=en (accessed: 30.09.2023). | en |
dc.references | EVgo (n.d.), Types of Electric Vehicles, https://www.evgo.com/ev‑drivers/types‑of‑evs/ (accessed: 15.09.2023). | en |
dc.references | ExxonMobil (n.d.), EMRD renewable diesel process technology, https://www.exxonmobilchemical.com/en/catalysts‑and‑technology‑licensing/emrd?utm_source=google&utm_medium=cpc&utm_campaign=cl_emrd_none&ds_k=renewable+diesel&gclsrc=aw.ds&&ppc_keyword=renewable%20diesel&gclid=EAIaIQobChMIkLuw1ceugQMVfkZBAh13cgScEAAYASAAEgII1_D_BwE (accessed: 16.09.2023). | en |
dc.references | Farghali, M., Osman, A.I., Chen, Z., Abdelhaleem, A., Ihara, I., Mohamed, I.M.A., Yap, P.‑S., Rooney, D.W. (2023), Social, environmental, and economic consequences of integrating renewable energies in the electricity sector: a review, “Environmental Chemistry Letters”, 21, pp. 1381–1418, https://doi.org/10.1007/s10311-023-01587-1 | en |
dc.references | Huang, D., Zhou, H., Lin, L. (2012), Biodiesel: an Alternative to Conventional Fuel, “Energy Procedia”, 16 (C), pp. 1874–1885, https://doi.org/10.1016/j.egypro.2012.01.287 | en |
dc.references | IDTechEx (n.d.), Sustainable Alternative Fuels 2021–2031, https://www.idtechex.com/en/research‑report/sustainable‑alternative‑fuels-2021-2031/799 (accessed: 15.09.2023). | en |
dc.references | International Energy Agency (2018), Nordic EV Outlook 2018. Insights from leaders in electric mobility, https://doi.org/10.1787/9789264293229‑en | en |
dc.references | Kumar, M. (2020), Social, Economic, and Environmental Impacts of Renewable Energy Resources, [in:] K.E. Okedu, A. Tahour, A.G. Aissaou (eds.), Wind Solar Hybrid Renewable Energy System, IntechOpen, pp. 227–238, https://doi.org/10.5772/intechopen.89494 | en |
dc.references | Liu, F., Su, C.W., Qin, M., Umar, M. (2023), Is renewable energy a path towards sustainable development?, “Sustainable Development”, 31 (5), pp. 3869–3880, https://doi.org/10.1002/sd.2631 | en |
dc.references | Luo, Z., Hu, Y., Xu, H., Gao, D., Li, W. (2020), Cost‑Economic Analysis of Hydrogen for China’s Fuel Cell Transportation Field, “Energies”, 13 (24), 6522, https://doi.org/10.3390/en13246522 | en |
dc.references | Martin, A.J., Larrazabal, G.O., Perez‑Ramirez, J. (2015), Towards sustainable fuels and chemicals through the electrochemical reduction of CO2: lessons from water electrolysis, “Green Chemistry”, 12, pp. 5114–5130, https://doi.org/10.1039/C5GC01893E | en |
dc.references | Nasiri, M., Saunila, M., Rantala, T., Ukko, J. (2022), Sustainable innovation among small businesses: The role of digital orientation, the external environment, and company characteristics, “Sustainable Development”, 30 (4), pp. 703–712, https://doi.org/10.1002/sd.2267 | en |
dc.references | No, S.‑Y. (2019), Parffinic Biofuels: HVO, BTL Diesel, and Farnesane, [in:] S.‑Y. No, Application of Liquid Biofuels to Internal Combustion Engines, Springer Nature Singapore Pte Ltd., Singapore, pp. 147–179, https://doi.org/10.1007/978-981-13-6737-3_4 | en |
dc.references | Thomas, G., Parks, G. (2006), Potential Roles of Ammonia in a Hydrogen Economy. A Study of Issues Related to the Use Ammonia for On‑Board Vehicular Hydrogen Storage, U.S. Department of Energy, https://www.energy.gov/eere/fuelcells/articles/potential‑roles‑ammonia‑hydrogen‑economy (accessed: 19.09.2023). | en |
dc.references | United Nations Economic Commission for Europe (2023), Consolidated Resolution on the Construction of Vehicles (R.E.3). Revision 7, https://unece.org/sites/default/files/2023-12/ECE_TRANS_WP.29_78_Rev.7e.pdf (accessed: 20.10.2023). | en |
dc.references | World LPG Association (WLPG), Liquid Gas Europe (2022), Autogas Incentive Policies, https://www.liquidgaseurope.eu/wp‑content/uploads/2024/05/Autogas_Incentive_Policies_2022.pdf (accessed: 1.06.2024). | en |
dc.contributor.authorEmail | Pangsy‑Kania, Sylwia - sylwia.pangsy-kania@ug.edu.pl | |
dc.contributor.authorEmail | Biegańska, Justyna - j.bieganska@wznj.umg.edu.pl | |
dc.contributor.authorEmail | Flouros, Floros - f.flouros@nup.ac.cy | |
dc.identifier.doi | 10.18778/1508-2008.27.36 | |
dc.relation.volume | 27 | |