Pokaż uproszczony rekord

dc.contributor.authorCzakon, Marcin
dc.date.accessioned2025-02-05T13:36:54Z
dc.date.available2025-02-05T13:36:54Z
dc.date.issued2024-11-05
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/54524
dc.description.abstractUlrich showed that most of the known axiomatisations of the classical equivalence calculus (EC) are D-incomplete, that is, they are not complete with the condensed detachment rule (D) as the primary rule of the proof procedure. He proved that the axiomatisation EEpEqrErEqp, EEEpppp by Wajsberg is D-complete and pointed out a number of D-complete single axioms, including one organic single axiom. In this paper we present new single axioms for EC with the condensed detachment and the reversed condensed detachment rules that form D-complete bases and are organic.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectequivalential calculusen
dc.subjectD-completeen
dc.subjectsingle axiomen
dc.subjectcondensed detachmenten
dc.titleD-complete Single Axioms for the Equivalential Calculus with the rules D and Ren
dc.typeArticle
dc.page.number479-489
dc.contributor.authorAffiliationJohn Paul II Catholic University of Lublin, Department of Logic, Polanden
dc.identifier.eissn2449-836X
dc.referencesM. Alizadeh, N. Joharizadeh, Counting weak Heyting algebras on finite distributive lattices, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 247–258, DOI: https://doi.org/10.1093/jigpal/jzu033en
dc.referencesM. Ardeshir, W. Ruitenburg, Basic propositional calculus I, Mathematical Logic Quarterly, vol. 44(3) (1998), pp. 317–343, DOI: https://doi.org/10.1002/malq.19980440304en
dc.referencesG. Birkhoff, Lattice theory, vol. 25, American Mathematical Soc. (1940).en
dc.referencesS. Celani, R. Jansana, Bounded distributive lattices with strict implication, Mathematical Logic Quarterly, vol. 51(3) (2005), pp. 219–246, DOI: https://doi.org/10.1002/malq.200410022en
dc.referencesI. Chajda, Weakly regular lattices, Mathematica Slovaca, vol. 35(4) (1985), pp. 387–391.en
dc.referencesI. Chajda, Congruence kernels in weakly regular varieties, Southeast Asian Bulletin of Mathematics, vol. 24 (2000), pp. 15–18, DOI: https://doi.org/10.1007/s10012-000-0015-8en
dc.referencesP. Dehornoy, Braids and self-distributivity, vol. 192, Birkhäuser (2012), DOI: https://doi.org/10.1007/978-3-0348-8442-6en
dc.referencesA. Diego, Sur les algebras de Hilbert, Ed. Herman, Collection de Logique Mathématique. Serie A, vol. 21 (1966).en
dc.referencesG. Epstein, A. Horn, Logics which are characterized by subresiduated lattices, Mathematical Logic Quarterly, vol. 22(1) (1976), pp. 199–210, DOI: https://doi.org/10.1002/malq.19760220128en
dc.referencesS. Ghorbani, MULTIPLIERS IN WEAK HEYTING ALGEBRAS, Journal of Mahani Mathematics Research, vol. 13(3) (2024), pp. 33–46, DOI: https://doi.org/10.22103/jmmr.2024.22758.1563en
dc.referencesD. Joyce, A classifying invariant of knots, the knot quandle, Journal of Pure and Applied Algebra, vol. 23(1) (1982), pp. 37–65, DOI: https://doi.org/10.1016/0022-4049(82)90077-9en
dc.referencesH. Junji, Congruence relations and congruence classes in lattices, Osaka Mathematical Journal, vol. 15(1) (1963), pp. 71–86.en
dc.referencesM. Nourany, S. Ghorbani, A. B. Saeid, On self-distributive weak Heyting algebras, Mathematical Logic Quarterly, vol. 69(2) (2023), pp. 192–206, DOI: https://doi.org/10.1002/malq.202200073en
dc.referencesH. J. San Martín, Compatible operations on commutative weak residuated lattices, Algebra universalis, vol. 73 (2015), pp. 143–155, DOI: https://doi.org/10.1007/s00012-015-0317-4en
dc.referencesH. J. San Martín, Principal congruences in weak Heyting algebras, Algebra universalis, vol. 75 (2016), pp. 405–418, DOI: https://doi.org/10.1007/s00012-016-0381-4en
dc.referencesH. J. San Martín, On congruences in weak implicative semi-lattices, Soft Computing, vol. 21 (2017), pp. 3167–3176, DOI: https://doi.org/10.1007/s00500-016-2188-9en
dc.referencesA. Visser, A propositional logic with explicit fixed points, Studia Logica, (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706en
dc.referencesJ. R. Hindley, BCK and BCI logics, condensed detachment and the 2-property, Notre Dame Journal of Formal Logic, vol. 34(2) (1993), pp. 231–250, DOI: https://doi.org/10.1305/ndjfl/1093634655en
dc.referencesJ. R. Hindley, D. Meredith, Principal Type-Schemes and Condensed Detachment, The Journal of Symbolic Logic, vol. 55(1) (1990), pp. 90–105, URL: http://www.jstor.org/stable/2274956en
dc.referencesK. Hodgson, Shortest Single Axioms for the Equivalential Calculus with CD and RCD, Journal of Automated Reasoning, (20) (1998), p. 283–316, DOI: https://doi.org/10.1023/A:1005731217123en
dc.referencesJ. A. Kalman, Condensed Detachment as a Rule of Inference, Studia Logica, vol. 42(4) (1983), pp. 443–451, DOI: https://doi.org/10.1007/bf01371632en
dc.referencesS. Leśniewski, Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, vol. 14(1) (1929), pp. 1–81.en
dc.referencesC. A. Meredith, A. N. Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, vol. 4(3) (1963), pp. 171–187, DOI: https://doi.org/10.1305/ndjfl/1093957574en
dc.referencesJ. G. Peterson, Shortest single axioms for the classical equivalential calculus, Notre Dame Journal of Formal Logic, vol. 17(2) (1976), pp. 267–271, DOI: https://doi.org/10.1305/ndjfl/1093887534en
dc.referencesJ. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM, vol. 12(1) (1965), pp. 23–41, DOI: https://doi.org/10.1145/321250.321253en
dc.referencesD. Ulrich, D-complete axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 34 (2005), pp. 135–142.en
dc.referencesM. Wajsberg, Metalogische Beiträge, Wiadomości Matematyczne, vol. 43 (1937), pp. 131–168.en
dc.referencesL. Wos, D. Ulrich, B. Fitelson, XCB, The last of the shortest single axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 3(32) (2003), pp. 131–136.en
dc.referencesJ. Łukasiewicz, Równoważnościowy rachunek zdań, [in:] J. Łukasiewicz (1961) (ed.), Z zagadnień Logiki i Filozofii, Państwowe Wydawnictwo Naukowe, Warszawa (1939), pp. 234–235.en
dc.contributor.authorEmailmarcinczakon@kul.pl
dc.identifier.doi10.18778/0138-0680.2024.15
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0