dc.contributor.author | Czakon, Marcin | |
dc.date.accessioned | 2025-02-05T13:36:54Z | |
dc.date.available | 2025-02-05T13:36:54Z | |
dc.date.issued | 2024-11-05 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/54524 | |
dc.description.abstract | Ulrich showed that most of the known axiomatisations of the classical equivalence calculus (EC) are D-incomplete, that is, they are not complete with the condensed detachment rule (D) as the primary rule of the proof procedure. He proved that the axiomatisation EEpEqrErEqp, EEEpppp by Wajsberg is D-complete and pointed out a number of D-complete single axioms, including one organic single axiom. In this paper we present new single axioms for EC with the condensed detachment and the reversed condensed detachment rules that form D-complete bases and are organic. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | equivalential calculus | en |
dc.subject | D-complete | en |
dc.subject | single axiom | en |
dc.subject | condensed detachment | en |
dc.title | D-complete Single Axioms for the Equivalential Calculus with the rules D and R | en |
dc.type | Article | |
dc.page.number | 479-489 | |
dc.contributor.authorAffiliation | John Paul II Catholic University of Lublin, Department of Logic, Poland | en |
dc.identifier.eissn | 2449-836X | |
dc.references | M. Alizadeh, N. Joharizadeh, Counting weak Heyting algebras on finite distributive lattices, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 247–258, DOI: https://doi.org/10.1093/jigpal/jzu033 | en |
dc.references | M. Ardeshir, W. Ruitenburg, Basic propositional calculus I, Mathematical Logic Quarterly, vol. 44(3) (1998), pp. 317–343, DOI: https://doi.org/10.1002/malq.19980440304 | en |
dc.references | G. Birkhoff, Lattice theory, vol. 25, American Mathematical Soc. (1940). | en |
dc.references | S. Celani, R. Jansana, Bounded distributive lattices with strict implication, Mathematical Logic Quarterly, vol. 51(3) (2005), pp. 219–246, DOI: https://doi.org/10.1002/malq.200410022 | en |
dc.references | I. Chajda, Weakly regular lattices, Mathematica Slovaca, vol. 35(4) (1985), pp. 387–391. | en |
dc.references | I. Chajda, Congruence kernels in weakly regular varieties, Southeast Asian Bulletin of Mathematics, vol. 24 (2000), pp. 15–18, DOI: https://doi.org/10.1007/s10012-000-0015-8 | en |
dc.references | P. Dehornoy, Braids and self-distributivity, vol. 192, Birkhäuser (2012), DOI: https://doi.org/10.1007/978-3-0348-8442-6 | en |
dc.references | A. Diego, Sur les algebras de Hilbert, Ed. Herman, Collection de Logique Mathématique. Serie A, vol. 21 (1966). | en |
dc.references | G. Epstein, A. Horn, Logics which are characterized by subresiduated lattices, Mathematical Logic Quarterly, vol. 22(1) (1976), pp. 199–210, DOI: https://doi.org/10.1002/malq.19760220128 | en |
dc.references | S. Ghorbani, MULTIPLIERS IN WEAK HEYTING ALGEBRAS, Journal of Mahani Mathematics Research, vol. 13(3) (2024), pp. 33–46, DOI: https://doi.org/10.22103/jmmr.2024.22758.1563 | en |
dc.references | D. Joyce, A classifying invariant of knots, the knot quandle, Journal of Pure and Applied Algebra, vol. 23(1) (1982), pp. 37–65, DOI: https://doi.org/10.1016/0022-4049(82)90077-9 | en |
dc.references | H. Junji, Congruence relations and congruence classes in lattices, Osaka Mathematical Journal, vol. 15(1) (1963), pp. 71–86. | en |
dc.references | M. Nourany, S. Ghorbani, A. B. Saeid, On self-distributive weak Heyting algebras, Mathematical Logic Quarterly, vol. 69(2) (2023), pp. 192–206, DOI: https://doi.org/10.1002/malq.202200073 | en |
dc.references | H. J. San Martín, Compatible operations on commutative weak residuated lattices, Algebra universalis, vol. 73 (2015), pp. 143–155, DOI: https://doi.org/10.1007/s00012-015-0317-4 | en |
dc.references | H. J. San Martín, Principal congruences in weak Heyting algebras, Algebra universalis, vol. 75 (2016), pp. 405–418, DOI: https://doi.org/10.1007/s00012-016-0381-4 | en |
dc.references | H. J. San Martín, On congruences in weak implicative semi-lattices, Soft Computing, vol. 21 (2017), pp. 3167–3176, DOI: https://doi.org/10.1007/s00500-016-2188-9 | en |
dc.references | A. Visser, A propositional logic with explicit fixed points, Studia Logica, (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706 | en |
dc.references | J. R. Hindley, BCK and BCI logics, condensed detachment and the 2-property, Notre Dame Journal of Formal Logic, vol. 34(2) (1993), pp. 231–250, DOI: https://doi.org/10.1305/ndjfl/1093634655 | en |
dc.references | J. R. Hindley, D. Meredith, Principal Type-Schemes and Condensed Detachment, The Journal of Symbolic Logic, vol. 55(1) (1990), pp. 90–105, URL: http://www.jstor.org/stable/2274956 | en |
dc.references | K. Hodgson, Shortest Single Axioms for the Equivalential Calculus with CD and RCD, Journal of Automated Reasoning, (20) (1998), p. 283–316, DOI: https://doi.org/10.1023/A:1005731217123 | en |
dc.references | J. A. Kalman, Condensed Detachment as a Rule of Inference, Studia Logica, vol. 42(4) (1983), pp. 443–451, DOI: https://doi.org/10.1007/bf01371632 | en |
dc.references | S. Leśniewski, Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, vol. 14(1) (1929), pp. 1–81. | en |
dc.references | C. A. Meredith, A. N. Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, vol. 4(3) (1963), pp. 171–187, DOI: https://doi.org/10.1305/ndjfl/1093957574 | en |
dc.references | J. G. Peterson, Shortest single axioms for the classical equivalential calculus, Notre Dame Journal of Formal Logic, vol. 17(2) (1976), pp. 267–271, DOI: https://doi.org/10.1305/ndjfl/1093887534 | en |
dc.references | J. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM, vol. 12(1) (1965), pp. 23–41, DOI: https://doi.org/10.1145/321250.321253 | en |
dc.references | D. Ulrich, D-complete axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 34 (2005), pp. 135–142. | en |
dc.references | M. Wajsberg, Metalogische Beiträge, Wiadomości Matematyczne, vol. 43 (1937), pp. 131–168. | en |
dc.references | L. Wos, D. Ulrich, B. Fitelson, XCB, The last of the shortest single axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 3(32) (2003), pp. 131–136. | en |
dc.references | J. Łukasiewicz, Równoważnościowy rachunek zdań, [in:] J. Łukasiewicz (1961) (ed.), Z zagadnień Logiki i Filozofii, Państwowe Wydawnictwo Naukowe, Warszawa (1939), pp. 234–235. | en |
dc.contributor.authorEmail | marcinczakon@kul.pl | |
dc.identifier.doi | 10.18778/0138-0680.2024.15 | |
dc.relation.volume | 53 | |