Pokaż uproszczony rekord

dc.contributor.authorCelani, Sergio A.
dc.contributor.authorMontagie, Daniela
dc.date.accessioned2025-02-05T13:36:55Z
dc.date.available2025-02-05T13:36:55Z
dc.date.issued2024-12-09
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/54527
dc.description.abstractHilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple \(\left(A,ƒ,g\right)\) where \(A\) is a Hilbert algebra, and \(f\) and \(g\) are unary maps on \(A\) such that \(f(a)\leq b\) iff \(a\leq g(b)\), and \(g(a\rightarrow b)\leq g(a)\rightarrow g(b)\) forall \(a,b\in A\). In this paper, we are going to prove that some varieties of HilGC-algebras are characterized by first-order conditions defined in the dual space and that these varieties are canonical. Additionally, we will also study and characterize the congruences of an HilGC-algebra through specific closed subsets of the dual space. This characterization will be applied to determine the simple algebras and subdirectly irreducible HilGC-algebras.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesBulletin of the Section of Logic;4en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectHilbert algebraen
dc.subjectmodal operatorsen
dc.subjectGalois connectionen
dc.subjectcanonical varietiesen
dc.subjectcongruencesen
dc.titleHilbert Algebras with Hilbert-Galois Connections IIen
dc.typeArticle
dc.page.number535-554
dc.contributor.authorAffiliationCelani, Sergio A. - Universidad Nacional del Centro and CONICET, Departamento de Matemática, Argentinaen
dc.contributor.authorAffiliationMontagie, Daniela - Instituto de Investigación en Tecnologías y Ciencias de la Ingeniería; Universidad Nacional del Comahue, Facultad de Economía y Administración, Departamento de Matemática, Argentinaen
dc.identifier.eissn2449-836X
dc.referencesP. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, UK (2014), DOI: https://doi.org/10.1017/CBO9781107050884en
dc.referencesD. Busneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2 (1985), pp. 29–35.en
dc.referencesS. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, URL: https://www.emis.de/journals/HOA/IJMMS/Volume291/642735.pdfen
dc.referencesS. Celani, L. M. Cabrer, D. Montangie, Representation and duality for Hilbert algebras, Central European Journal of Mathematics, vol. 7(3) (2009), pp. 463–478, DOI: https://doi.org/10.2478/s11533-009-0032-5en
dc.referencesS. Celani, D. Montangie, Hilbert Algebras with a necessity modal operator, Reports on Mathematical Logic, vol. 49 (2014), pp. 47–77, DOI: https://doi.org/10.4467/20842589RM.14.004.2274en
dc.referencesS. Celani, D. Montangie, Hilbert algebras with Hilbert–Galois connections, Studia Logica, vol. 111(1) (2023), pp. 113–138, DOI: https://doi.org/10.1007/s11225-022-10019-0en
dc.referencesI. Chajda, R. Halas, J. Kühr, Semilattice structures, Heldermann Verlag, Lemgo, Germany (2007).en
dc.referencesA. Diego, Sur les algèbres de Hilbert, Hermann, Paris, Collection de Logique Mathematique, Sér. A, vol. 21 (1966).en
dc.referencesA. Monteiro, Sur les algebres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://purl.pt/2926en
dc.contributor.authorEmailCelani, Sergio A. - scelani@exa.unicen.edu.ar
dc.contributor.authorEmailMontagie, Daniela - dmontang@gmail.com
dc.identifier.doi10.18778/0138-0680.2024.17
dc.relation.volume53


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0