dc.contributor.author | Celani, Sergio A. | |
dc.contributor.author | Montagie, Daniela | |
dc.date.accessioned | 2025-02-05T13:36:55Z | |
dc.date.available | 2025-02-05T13:36:55Z | |
dc.date.issued | 2024-12-09 | |
dc.identifier.issn | 0138-0680 | |
dc.identifier.uri | http://hdl.handle.net/11089/54527 | |
dc.description.abstract | Hilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple \(\left(A,ƒ,g\right)\) where \(A\) is a Hilbert algebra, and \(f\) and \(g\) are unary maps on \(A\) such that \(f(a)\leq b\) iff \(a\leq g(b)\), and \(g(a\rightarrow b)\leq g(a)\rightarrow g(b)\) forall \(a,b\in A\). In this paper, we are going to prove that some varieties of HilGC-algebras are characterized by first-order conditions defined in the dual space and that these varieties are canonical. Additionally, we will also study and characterize the congruences of an HilGC-algebra through specific closed subsets of the dual space. This characterization will be applied to determine the simple algebras and subdirectly irreducible HilGC-algebras. | en |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Bulletin of the Section of Logic;4 | en |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0 | |
dc.subject | Hilbert algebra | en |
dc.subject | modal operators | en |
dc.subject | Galois connection | en |
dc.subject | canonical varieties | en |
dc.subject | congruences | en |
dc.title | Hilbert Algebras with Hilbert-Galois Connections II | en |
dc.type | Article | |
dc.page.number | 535-554 | |
dc.contributor.authorAffiliation | Celani, Sergio A. - Universidad Nacional del Centro and CONICET, Departamento de Matemática, Argentina | en |
dc.contributor.authorAffiliation | Montagie, Daniela - Instituto de Investigación en Tecnologías y Ciencias de la Ingeniería; Universidad Nacional del Comahue, Facultad de Economía y Administración, Departamento de Matemática, Argentina | en |
dc.identifier.eissn | 2449-836X | |
dc.references | P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, UK (2014), DOI: https://doi.org/10.1017/CBO9781107050884 | en |
dc.references | D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2 (1985), pp. 29–35. | en |
dc.references | S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, URL: https://www.emis.de/journals/HOA/IJMMS/Volume291/642735.pdf | en |
dc.references | S. Celani, L. M. Cabrer, D. Montangie, Representation and duality for Hilbert algebras, Central European Journal of Mathematics, vol. 7(3) (2009), pp. 463–478, DOI: https://doi.org/10.2478/s11533-009-0032-5 | en |
dc.references | S. Celani, D. Montangie, Hilbert Algebras with a necessity modal operator, Reports on Mathematical Logic, vol. 49 (2014), pp. 47–77, DOI: https://doi.org/10.4467/20842589RM.14.004.2274 | en |
dc.references | S. Celani, D. Montangie, Hilbert algebras with Hilbert–Galois connections, Studia Logica, vol. 111(1) (2023), pp. 113–138, DOI: https://doi.org/10.1007/s11225-022-10019-0 | en |
dc.references | I. Chajda, R. Halas, J. Kühr, Semilattice structures, Heldermann Verlag, Lemgo, Germany (2007). | en |
dc.references | A. Diego, Sur les algèbres de Hilbert, Hermann, Paris, Collection de Logique Mathematique, Sér. A, vol. 21 (1966). | en |
dc.references | A. Monteiro, Sur les algebres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://purl.pt/2926 | en |
dc.contributor.authorEmail | Celani, Sergio A. - scelani@exa.unicen.edu.ar | |
dc.contributor.authorEmail | Montagie, Daniela - dmontang@gmail.com | |
dc.identifier.doi | 10.18778/0138-0680.2024.17 | |
dc.relation.volume | 53 | |