dc.contributor.author | Pasikowski, Sławomir | |
dc.date.accessioned | 2025-07-08T14:21:20Z | |
dc.date.available | 2025-07-08T14:21:20Z | |
dc.date.issued | 2025-07-03 | |
dc.identifier.uri | http://hdl.handle.net/11089/55884 | |
dc.description.abstract | This article explores the role of meta-analysis and systematic review in developing and refining empirical theories in educational sciences. It highlights the method’s value in synthesizing research findings, identifying patterns, and improving the explanatory power and coherence of theories. It also underscores the skepticism present in academic circles, especially concerning meta-analysis. While meta-analysis is widely used in evidence-based approaches, its adoption in educational research sometimes remains locally limited due to concerns about data quality, methodological heterogeneity, publication bias, and perceived epistemic incompatibility with constructivist or interpretive paradigms. The author argues that these challenges can be addressed through methodological rigor, data transparency, proper contextualization, and interdisciplinary training in statistics, epistemology, and logic. Meta-analysis is presented not only as a statistical tool, but as a means of supporting intellectual inquiry and collaborative theory-building. The article calls for greater integration of meta-analytic methods into education research, emphasizing their potential to enhance the quality, comparability, and transparency of scientific knowledge. | en |
dc.description.abstract | Artykuł analizuje rolę metaanalizy i systematycznego przeglądu literatury w rozwijaniu i doskonaleniu teorii empirycznych w naukach o edukacji. Podkreśla wartość tych metod w syntezowaniu wyników badań, identyfikowaniu wzorców oraz zwiększaniu spójności i mocy eksplanacyjnej teorii. Zwraca też uwagę na środowiskowy sceptycyzm, zwłaszcza wobec metaanalizy. Choć metaanaliza jest szeroko stosowana w podejściach opartych na dowodach, jej wykorzystanie w badaniach edukacyjnych bywa lokalnie ograniczone – głównie z powodu obaw dotyczących jakości danych, heterogeniczności metod, stronniczości publikacyjnej oraz spostrzeganej niekompatybilności epistemicznej z podejściami konstruktywistycznymi lub interpretatywnymi. Autor przekonuje, że wyzwania te można przezwyciężyć dzięki rygorowi metodologicznemu, transparentności danych, właściwemu kontekstualizowaniu oraz interdyscyplinarnemu przygotowaniu z zakresu statystyki, epistemologii i logiki. Metaanaliza przedstawiana jest nie jako narzędzie wyłącznie statystyczne, lecz jako wsparcie dla intelektualnych dociekań i współpracy teoretycznej. Artykuł apeluje o silniejsze włączenie metaanalizy w badania edukacyjne, podkreślając jej potencjał dla poprawy jakości, porównywalności i przejrzystości wiedzy naukowej. | pl |
dc.language.iso | en | |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl |
dc.relation.ispartofseries | Nauki o Wychowaniu. Studia Interdyscyplinarne;1 | pl |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0 | |
dc.subject | evidence-based approach | en |
dc.subject | meta-analysis | en |
dc.subject | theory | en |
dc.subject | systematic literature review | en |
dc.subject | podejście oparte na dowodach | pl |
dc.subject | metaanaliza | pl |
dc.subject | teoria | pl |
dc.subject | systematyczny przegląd literatury | pl |
dc.title | Meta-analysis for Supporting Empirical Theories in Educational Sciences | en |
dc.title.alternative | Metaanaliza dla wsparcia teorii empirycznych w naukach o edukacji | pl |
dc.type | Article | |
dc.page.number | 45-55 | |
dc.contributor.authorAffiliation | University of Lodz | en |
dc.identifier.eissn | 2450-4491 | |
dc.references | Audigier V., White I. R., Jolani S., Debray T. P. A., Quartagno M., Carpenter J., Resche-Rigon M. (2018) Multiple Imputation for Multilevel Data with Continuous and Binary Variables, “Statistical Science”, no. 33, pp. 160–183, https://doi.org/10.1214/18-STS646 | en |
dc.references | Bartoš F., Maier M., Wagenmakers E., Doucouliagos H., Stanley T. D. (2023) Robust Bayesian Meta‐Analysis: Model‐Averaging Across Complementary Publication Bias Adjustment Methods, Research Synthesis Methods, no. 14(1), pp. 99–116, https://doi.org/10.1002/jrsm.1594 | en |
dc.references | Cumming G., Calin-Jageman R. (2017) Introduction to the New Statistics. Estimation, Open Science, and Beyond, New York, NY – London, Routledge, https://doi.org/10.4324/9781315708607 | en |
dc.references | Gajda A., Karwowski M., Beghetto R.A. (2017) Creativity and Academic Achievement: A Meta-Analysis, Journal of Educational Psychology, no. 109, pp. 269–299, https://doi.org/10.1037/edu0000133 | en |
dc.references | Gosling C.J., Solanes A., Fusar-Poli P., Radua J. (2023) Metaumbrella: the First Comprehensive Suite to Perform Data Analysis in Umbrella Reviews with Stratification of the Evidence, BMJ Mental Health, no. 26, pp. 1–8, https://doi.org/10.1136/bmjment-2022-300534 | en |
dc.references | Gough D., Oliver S., Thomas J. (2017) An Introduction to Systematic Reviews, London, Sage. | en |
dc.references | Grund S., Ludtke O., Robitzsch A. (2018) Multiple Imputation of Missing Data for Multilevel Models: Simulations and Recommendations, Organizational Research Methods, no. 21, pp. 111–149, https://doi.org/10.1177/1094428117703686 | en |
dc.references | Harrer M., Cuijpers P., Furukawa T. A., Ebert D. D. (2022) Doing Meta-Analysis with R. A Hands-On Guide, London – New York, NY, Taylor & Francis Group, https://doi.org/10.1201/9781003107347 | en |
dc.references | Hattie J. (2008) Visible Learning: A Synthesis of Over 800 Meta-Analyses Relating to Achievement, London – New York, NY, Routledge. | en |
dc.references | Hempel C. G. (1964) Fundamentals of Concept Formation in Empirical Science, Chicago, IL – London, University of Chicago Press. | en |
dc.references | Hempel C. G. (1965) Aspects of Scientific Explanation and Other Essays in the Philosophy of Science, New York, NY, Free Press. | en |
dc.references | Heyvaert M., Maes B., Onghena P. (2011) Applying Mixed Methods Research at the Synthesis Level: An Overview, Research in the Schools, no. 18(1), pp. 12–24. | en |
dc.references | Hong Q. N., Pluye P., Bujold M., Wassef M. (2017) Convergent and Sequential Synthesis Designs: Implications for Conducting and Reporting Systematic Reviews of Qualitative and Quantitative Evidence, Systematic Reviews, no. 6(1):61, https://doi.org/10.1186/s13643-017-0454-2 | en |
dc.references | Ioannidis J. P. A. (2009) Integration of Evidence from Multiple Meta-Analyses: A Primer on Umbrella Reviews, Treatment Networks and Multiple Treatments Meta-Analyses, Canadian Medical Association Journal, no. 181(8), pp. 488–493, https://doi.org/10.1503/cmaj.081086 | en |
dc.references | Lakatos I. (1989) The Methodology of Scientific Research Programmes, Cambridge, Cambridge University Press. | en |
dc.references | León S. P., Garrido M. G., Martínez I. G., Lipnevich A. (2025) Passing TPACK through the Metascience Circle: A Meta-analytic Systematic Review of the Application of the Model, May 14, preprint, https://doi.org/10.35542/osf.io/c5qsr_v1 | en |
dc.references | León S. P., Lipnevich A., Garrido M. G. (2025) Is All That Glitters Gold? Meta-analytical Systematic Review of the Effect of the Montessori, April 7, preprint, https://doi.org/10.35542/osf.io/mf9ec_v1 | en |
dc.references | León S. P., Panadero E., García-Martínez I. (2023) How Accurate Are Our Students? A Meta-Analytic Systematic Review on Self-assessment Scoring Accuracy, Educational Psychology Review, no. 35:106, https://doi.org/10.1007/s10648-023-09819-0. | en |
dc.references | Merton R. K. (2017) Social Theory and Social Structure, New York, NY, Free Press. | en |
dc.references | Moher D., Liberati A., Tetzlaff J., Altman D. G., Prisma Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA Statement, PLoS Medicine, no. 6(7), e1000097, https://doi.org/10.1371/journal.pmed.1000097 | en |
dc.references | Page M. J., Higgins J. P. T., Sterne J. A. C. (2019) Assessing Risk of Bias Due to Missing Results in a Synthesis, in: Cochrane Handbook for Systematic Reviews of Interventions, J. P. T. Higgins, J. Thomas, J. Chandler, M. Cumpston, T. Li, M. J. Page, V. A. Welch (eds.), Oxford, The Cochrane Collaboration and John Wiley & Sons, https://doi.org/10.1002/9781119536604.ch13 | en |
dc.references | Przełęcki M. (1988) Logika teorii empirycznych, Warszawa, Wydawnictwo Naukowe PWN. | en |
dc.references | Pigott T. D., Polanin J. R. (2019) Methodological Guidance Paper: High-Quality Meta-Analysis in a Systematic Review, Review of Educational Research, no. 90(1), pp. 24–46, https://doi.org/10.3102/0034654319877153 | en |
dc.references | Popper K. R. (2002) The Logic of Scientific Discovery, London – New York, NY, Routledge. | en |
dc.references | Reichenbach H. (1963) The Rise of Scientific Philosophy, Berkeley & Los Angeles, University of California Press. | en |
dc.references | Sandelowski M., Barroso J. (2007) Handbook for Synthesizing Qualitative Research, New York, NY, Springer. | en |
dc.references | Schmidt F. L. (1992) What Do Data Really Mean? Research Findings, Meta-Analysis, and Cumulative Knowledge in Psychology, American Psychologist, no. 47(10), pp. 1173–1181, https://doi.org/10.1037//0003-066X.47.10.1173 | en |
dc.references | Shea B. J., Reeves B. C., Wells G., Thuku M., Hamel C., Moran J., Moher D., Tugwell P., Welch V., Kristjansson E., Henry D. A. (2017) AMSTAR 2: A Critical Appraisal Tool for Systematic Reviews That Include Randomised or Non-Randomised Studies of Healthcare Interventions, or Both, BMJ, 358:j4008, https://doi.org/10.1136/bmj.j4008 | en |
dc.references | Slim K., Marquillier T. (2022) Umbrella Reviews: A New Tool to Synthesize Scientific Evidence in Surgery, Journal of Visceral Surgery, no. 159(2), pp. 144–149, https://doi.org/10.1016/j.jviscsurg.2021.10.001 | en |
dc.references | van Fraassen B. C. (2004) The Scientific Image, Oxford, Oxford University Press. | en |
dc.references | Vevea J. L., Hedges L. V. (1995) A General Linear Model for Estimating Effect Size in the Presence of Publication Bias, Psychometrika, no. 60, pp. 419–435, https://doi.org/10.1007/BF02294384 | en |
dc.references | Wiśniewska E., Karwowski M. (2007) Efektywność treningów twórczości – podejście metaanalityczne, Ruch Pedagogiczny, no. 3–4, pp. 31–50. | en |
dc.references | Wittgenstein L. (1958) Philosophical Investigations, New York, NY, Macmillan Publishing Co. | en |
dc.contributor.authorEmail | pasikowski@now.uni.lodz.pl | |
dc.identifier.doi | 10.18778/2450-4491.20.05 | |
dc.relation.volume | 20 | |