Pokaż uproszczony rekord

dc.contributor.authorGhasemi, Vahid
dc.contributor.authorYarahmadi, Parichehr
dc.contributor.authorKuhzady, Salar
dc.date.accessioned2025-07-11T14:49:40Z
dc.date.available2025-07-11T14:49:40Z
dc.date.issued2025-06-11
dc.identifier.issn0867-5856
dc.identifier.urihttp://hdl.handle.net/11089/55976
dc.description.abstractThis study explores the critical intersection in the tourism sector combining artificial intelligence (AI) technologies with conventional methods. This research outlines three main goals: assessing the use of AI chatbots in the tourism industry, reviewing existing literature on intelligent tour guide apps, and pinpointing areas for further research. It focuses on incorporating AI into the tourism industry, highlighting the effectiveness of tools such as ChatGPT. The systematic literature review examines the use of ChatGPT in pre-trip, en route, and post-trip scenarios, analyzing its effects on customer engagement. Using technology acceptance model (TAM) and unified theory of acceptance and use of technology (UTAUT) frameworks, the adoption of automated intelligent tour guides is explored. The research follows a systematic review methodology, adhering to PRISMA guidelines for methodological rigor and has uncovered several factors that impact the adoption of AI-based intelligent tour guides, offering valuable insights for academic scholars and industry experts.en
dc.language.isoen
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl
dc.relation.ispartofseriesTuryzm/Tourism;1en
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0
dc.subjectAI technologyen
dc.subjectsmart tour guide appsen
dc.subjectAI-powered live chatbotsen
dc.subjectChatGPTen
dc.subjectinteligent featuresen
dc.titleAI-powered live chatbots and smart tour guide apps in tourism: A literature review and future research directionsen
dc.typeArticle
dc.page.number217-227
dc.contributor.authorAffiliationGhasemi, Vahid - CETRAD (Vila Real, Portugal); CEFAGE (Évora, Portugal); Universidade Europeia (Lisbon, Portugal), Faculty of Social Science and Technologyen
dc.contributor.authorAffiliationYarahmadi, Parichehr - Università degli Studi di Cagliari (Cagliari, Italy), Department of Business and Economicsen
dc.contributor.authorAffiliationKuhzady, Salar - University of Kurdistan (Sanandaj, Iran), Department of Business Administration, Faculty of Humanities and Social Sciences; Kurdistan Studies Institute (Sanandaj, Iran)en
dc.identifier.eissn2080-6922
dc.referencesAltinay, L., & Kozak, M. (2021). Revisiting destination competitiveness through chaos theory: The butterfly competitiveness model. Journal of Hospitality and Tourism Management, 49, 331–340. https://doi.org/10.1016/j.jhtm.2021.10.004en
dc.referencesAluri, A. (2017). Mobile augmented reality (MAR) game as a travel guide: Insights from Pokémon GO. Journal of Hospitality and Tourism Technology, 8(1), 55–72. https://doi.org/10.1108/JHTT-12-2016-0087en
dc.referencesBooth, P., Chaperon, S.A., Kennell, J.S., & Morrison, A.M. (2020). Entrepreneurship in island contexts: A systematic review of the tourism and hospitality literature. International Journal of Hospitality Management, 85, Article 102438. https://doi.org/10.1016/j.ijhm.2019.102438en
dc.referencesBuberwa, R.F., & Msusa, A. (2019). Developing a mobile GIS tour guide app for Dar-es-salaam City, Tanzania. International Journal of Scientific & Technology Research, 8(4), 237–242. https://www.ijstr.org/final-print/apr2019/Developing-A-Mobile-Gis-Tour-Guide-App-For-Dar-es-salaam-City-Tanzania.pdfen
dc.referencesBuhalis, D., Harwood, T., Bogicevic, V., Viglia, G., Beldona, S., & Hofacker, C. (2019). Technological disruptions in services: Lessons from tourism and hospitality. Journal of Service Management, 30(4), 484–506. https://doi.org/10.1108/JOSM-12-2018-0398en
dc.referencesÇalişkan, G., & Sevim, B. (2023). Use of service robots in hospitality: An observational study in terms of technology acceptance model. Tourism and Hospitality Research, 0(0). https://doi.org/10.1177/14673584231198438en
dc.referencesCalisto, M. de L., & Sarkar, S. (2024). A systematic review of virtual reality in tourism and hospitality: The known and the paths to follow. International Journal of Hospitality Management, 116, Article 103623. https://doi.org/10.1016/j.ijhm.2023.103623en
dc.referencesCao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P.S., & Sun, L. (2023). A comprehensive survey of AI-generated content (AIGC): A history of generative AI from GAN to ChatGPT. arXiv – Cornell University. https://doi.org/10.48550/arXiv.2303.04226en
dc.referencesCarvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: Applications, benefits and risks. Tourism Review, 79(2), 290–303. https://doi.org/10.1108/TR-02-2023-0088en
dc.referencesChang, C.-W., Zhang, J.Z., & Neslin, S.A. (2018). The role of the physical store: Developing customer value through ‘fit product’ purchase. Cheung Kong Graduate School of Business. https://english.ckgsb.edu.cn/the-role-of-the-physical-store-developing-customer-value-through-fit-product-purchases/en
dc.referencesChatterjee, J., & Dethlefs, N. (2023). This new conversational AI model can be your friend, philosopher, and guide … and even your worst enemy. Patterns, 4(1), Article 100676. https://doi.org/10.1016/j.patter.2022.100676en
dc.referencesChen, H., & Rahman, I. (2018). Cultural tourism: An analysis of engagement, cultural contact, memorable tourism experience and destination loyalty. Tourism Management Perspectives, 26, 153–163. https://doi.org/10.1016/j.tmp.2017.10.006en
dc.referencesChi, O.H., Denton, G., & Gursoy, D. (2020). Artificially intelligent device use in service delivery: A systematic review, synthesis, and research agenda. Journal of Hospitality Marketing & Management, 29(7), 757–786. https://doi.org/10.1080/19368623.2020.1721394en
dc.referencesChrastina, J. (2020). Title analysis of (systematic) scoping review studies: Chaos or consistency? Nursing & Health Sciences, 22(3), 557–562. https://doi.org/10.1111/nhs.12694en
dc.referencesChui, M., Roberts, R., & Yee, L. (2022, December 20). Generative AI is here: How tools like ChatGPT could change your business. QuantumBlack, AI by McKinsey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/generative-ai-is-here-how-tools-like-chatgpt-could-change-your-businessen
dc.referencesCiechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539–548. https://doi.org/10.1016/j.future.2018.01.055en
dc.referencesCorne, A., Massot, V., & Merasli, S. (2023). The determinants of the adoption of blockchain technology in the tourism sector and metaverse perspectives. Information Technology & Tourism, 25(4), 605–633. https://doi.org/10.1007/s40558-023-00263-yen
dc.referencesCurran, K., & Smith, K. (2006). A location-based mobile tourist guide. Tourism and Hospitality Research, 6(2), 180–187. https://doi.org/10.1057/palgrave.thr.6040055en
dc.referencesDale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811–817. https://doi.org/10.1017/S1351324916000243en
dc.referencesDu, H., Li, Z., Niyato, D., Kang, J., Xiong, Z., Shen, X.(S.)., & Kim, D.I. (2023). Enabling AI-generated content (AIGC) services in wireless edge networks. arXiv – Cornell University. https://doi.org/10.48550/arXiv.2301.03220en
dc.referencesDuan, J., Xie, C., & Morrison, A.M. (2022). Tourism crises and impacts on destinations: A systematic review of the tourism and hospitality literature. Journal of Hospitality & Tourism Research, 46(4), 667–695. https://doi.org/10.1177/1096348021994194en
dc.referencesEisingerich, A.B., Marchand, A., Fritze, M.P., & Dong, L. (2019). Hook vs. hope: How to enhance customer engagement through gamification. International Journal of Research in Marketing, 36(2), 200–215. https://doi.org/10.1016/j.ijresmar.2019.02.003en
dc.referencesElmohandes, N., & Marghany, M. (2024). Effective or ineffective? Using ChatGPT for staffing in the hospitality industry. European Journal of Tourism Research, 36, Article 3617. https://doi.org/10.54055/ejtr.v36i.3286en
dc.referencesFadhil, A., & Schiavo, G. (2019). Designing for health chatbots. arXiv – Cornell University. https://doi.org/10.48550/arXiv.1902.09022en
dc.referencesFeine, J., Morana, S., & Gnewuch, U. (2019). Measuring service encounter satisfaction with customer service chatbots using sentiment analysis. In Proceedings of the 14th International Conference on Wirtschaftsinformatik (WI2019), Siegen, Germany, February 24–27, 2019 (pp. 1115–1129). AIS. eLibrary. https://aisel.aisnet.org/wi2019/track10/papers/2/en
dc.referencesFryer, L.K., Ainley, M., Thompson, A., Gibson, A., & Sherlock, Z. (2017). Stimulating and sustaining interest in a language course: An experimental comparison of chatbot and human task partners. Computers in Human Behavior, 75, 461–468. https://doi.org/10.1016/j.chb.2017.05.045en
dc.referencesGao, J., & Pan, Y. (2022). Evaluating influencing factors of tourists’ experiences with smart tour guide system: A mixed method research. Sustainability, 14(23), Article 16320. https://doi.org/10.3390/su142316320en
dc.referencesGo, E., & Sundar, S.S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316. https://doi.org/10.1016/j.chb.2019.01.020en
dc.referencesGo, H., Kang, M., & Suh, S.C. (2020). Machine learning of robots in tourism and hospitality: Interactive technology acceptance model (iTAM) – cutting edge. Tourism Review, 75(4), 625–636. https://doi.org/10.1108/TR-02-2019-0062en
dc.referencesGuo, Q., Zhu, D., Lin, M.-T.(B.)., Li, F.(S.)., Kim, P.B., Du, D., & Shu, Y. (2023). Hospitality employees’ technology adoption at the workplace: Evidence from a meta-analysis. International Journal of Contemporary Hospitality Management, 35(7), 2437–2464. https://doi.org/10.1108/IJCHM-06-2022-0701en
dc.referencesHill, J., Ford, W.R., & Farreras, I.G. (2015). Real conversations with artificial intelligence: A comparison between human–human online conversations and human–chatbot conversations. Computers in Human Behavior, 49, 245–250. https://doi.org/10.1016/j.chb.2015.02.026en
dc.referencesHinson, R.E., Osabutey, E.L.C., & Kosiba, J.P. (2020). Exploring the dialogic communication potential of selected African destinations’ place websites. Journal of Business Research, 116, 690–698. https://doi.org/10.1016/j.jbusres.2018.03.033en
dc.referencesHollebeek, L.D., & Belk, R. (2021). Consumers’ technology-facilitated brand engagement and wellbeing: Positivist TAM/PERMA- vs. Consumer Culture Theory perspectives. International Journal of Research in Marketing, 38(2), 387–401. https://doi.org/10.1016/j.ijresmar.2021.03.001en
dc.referencesHollebeek, L.D., Srivastava, R.K., & Chen, T. (2019). S-D logic–informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM. Journal of the Academy of Marketing Science, 47, 161–185. https://doi.org/10.1007/s11747-016-0494-5en
dc.referencesHuang, S.(S.)., Weiler, B., & Assaker, G. (2015). Effects of interpretive guiding outcomes on tourist satisfaction and behavioral intention. Journal of Travel Research, 54(3), 344–358. https://doi.org/10.1177/0047287513517426en
dc.referencesHuang, Y.-C., Chang, L.L., Yu, C.-P., & Chen, J. (2019). Examining an extended technology acceptance model with experience construct on hotel consumers’ adoption of mobile applications. Journal of Hospitality Marketing & Management, 28(8), 957–980. https://doi.org/10.1080/19368623.2019.1580172en
dc.referencesIskender, A. (2023). Holy or unholy? Interview with open AI’s ChatGPT. European Journal of Tourism Research, 34, Article 3414. https://doi.org/10.54055/ejtr.v34i.3169en
dc.referencesIvanov, S., & Webster, C. (Eds.). (2019). Robots, artificial intelligence, and service automation in travel, tourism and hospitality. Emerald Publishing. https://doi.org/10.1108/978-1-78756-687-320191014en
dc.referencesJiang, H., Cheng, Y., Yang, J., & Gao, S. (2022). AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Computers in Human Behavior, 134, Article 107329. https://doi.org/10.1016/j.chb.2022.107329en
dc.referencesKim, J.(J.)., & Fesenmaier, D.R. (2017). Sharing tourism experiences: The posttrip experience. Journal of Travel Research, 56(1), 28–40. https://doi.org/10.1177/0047287515620491en
dc.referencesKim, J.Y., Chung, N., & Ahn, K.M. (2019). The impact of mobile tour information services on destination travel intention. Information Development, 35(1), 107–120. https://doi.org/10.1177/0266666917730437en
dc.referencesKounavis, C.D., Kasimati, A.E., & Zamani, E.D. (2012). Enhancing the tourism experience through mobile augmented reality: Challenges and prospects. International Journal of Engineering Business Management, 4. https://doi.org/10.5772/51644en
dc.referencesKrajňák, T. (2021). The effects of terrorism on tourism demand: A systematic review. Tourism Economics, 27(8), 1736–1758. https://doi.org/10.1177/1354816620938900en
dc.referencesLai, I.K.W. (2015). Traveler acceptance of an app-based mobile tour guide. Journal of Hospitality & Tourism Research, 39(3), 401–432. https://doi.org/10.1177/1096348013491596en
dc.referencesLai, W.-C., & Hung, W.-H. (2017). Constructing the smart hotel architecture: A case study in Taiwan. In ICEB 2017 Proceedings (Dubai, UAE). AIS. eLibrary. https://aisel.aisnet.org/iceb2017/12en
dc.referencesLee, S., & Choi, J. (2017). Enhancing user experience with conversational agent for movie recommendation: Effects of self-disclosure and reciprocity. International Journal of Human-Computer Studies, 103, 95–105. https://doi.org/10.1016/j.ijhcs.2017.02.005en
dc.referencesLeung, R. (2019). Smart hospitality: Taiwan hotel stakeholder perspectives. Tourism Review, 74(1), 50–62. https://doi.org/10.1108/TR-09-2017-0149en
dc.referencesLi, J.(J.)., Bonn, M.A., & Ye, B.H. (2019). Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172–181. https://doi.org/10.1016/j.tourman.2019.02.006en
dc.referencesLi, M., Yin, D., Qiu, H., & Bai, B. (2021). A systematic review of AI technology-based service encounters: Implications for hospitality and tourism operations. International Journal of Hospitality Management, 95, Article 102930. https://doi.org/10.1016/j.ijhm.2021.102930en
dc.referencesLi, S., & Xiao, Q. (2020). Classification and improvement strategy for design features of mobile tourist guide application: A Kano-IPA approach. Mobile Information Systems, (1), Article 8816130. https://doi.org/10.1155/2020/8816130en
dc.referencesLin, M.-T.(B.)., Zhu, D., Liu, C., & Kim, P.B. (2022). A systematic review of empirical studies of pro-environmental behavior in hospitality and tourism contexts. International Journal of Contemporary Hospitality Management, 34(11), 3982–4006. https://doi.org/10.1108/IJCHM-12-2021-1478en
dc.referencesLiu, D., Tong, C., Liu, Y., Yuan, Y., & Ju, C. (2016). Examining the adoption and continuous usage of context-aware services: An empirical study on the use of an intelligent tourist guide. Information Development, 32(3), 608–621. https://doi.org/10.1177/0266666914563358en
dc.referencesLiu, Y., Du, H., Niyato, D., Kang, J., Xiong, Z., Miao, C., Shen, X.(S.)., & Jamalipour, A. (2023). Blockchain-empowered lifecycle management for AI-generated content (AIGC) products in edge networks. arXiv – Cornell University. https://doi.org/10.48550/arXiv.2303.02836en
dc.referencesMcKercher, B., & Darcy, S. (2018). Re-conceptualizing barriers to travel by people with disabilities. Tourism Management Perspectives, 26, 59–66. https://doi.org/10.1016/j.tmp.2018.01.003en
dc.referencesMondal, S., Das, S., & Vrana, V.G. (2023). How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies, 11(2), Article 44. https://doi.org/10.3390/technologies11020044en
dc.referencesMorosan, C. (2012). Theoretical and empirical considerations of guests’ perceptions of biometric systems in hotels: Extending the technology acceptance model. Journal of Hospitality & Tourism Research, 36(1), 52–84. https://doi.org/10.1177/1096348010380601en
dc.referencesNautiyal, R., Albrecht, J.N., & Nautiyal, A. (2023). ChatGPT and tourism academia. Annals of Tourism Research, 99, Article 103544. https://doi.org/10.1016/j.annals.2023.103544en
dc.referencesNeuhofer, B., Buhalis, D., & Ladkin, A. (2015). Smart technologies for personalized experiences: A case study in the hospitality domain. Electronic Markets, 25(3), 243–254. https://doi.org/10.1007/s12525-015-0182-1en
dc.referencesNiu, H. (2023). The effect of intelligent tour guide system based on attraction positioning and recommendation to improve the experience of tourists visiting scenic spots. Intelligent Systems with Applications, 19, Article 200263. https://doi.org/10.1016/j.iswa.2023.200263en
dc.referencesPeres, R., Correia, A., & Moital, M. (2011). The indicators of intention to adopt mobile electronic tourist guides. Journal of Hospitality and Tourism Technology, 2(2), 120–138. https://doi.org/10.1108/17579881111154236en
dc.referencesPillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199–3226. https://doi.org/10.1108/IJCHM-04-2020-0259en
dc.referencesPrasetya, S.A., Erwin, A., & Galinium, M. (2018). Implementing Indonesian language chatbot for ecommerce site using artificial intelligence markup language (AIML). Prosiding Seminar Nasional Pakar 2018, 1, 313–322. https://doi.org/10.25105/pakar.v0i0.2652en
dc.referencesRashkin, H., Smith, E.M., Li, M., & Boureau, Y.-L. (2019). Towards empathetic open-domain conversation models: A new benchmark and dataset. In A. Korhonen, D. Traum & L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 5370–5381). Association for Computational Linguistics. https://aclanthology.org/P19-1534.pdfen
dc.referencesReinartz, W., Wiegand, N., & Imschloss, M. (2019). The impact of digital transformation on the retailing value chain. International Journal of Research in Marketing, 36(3), 350–366. https://doi.org/10.1016/j.ijresmar.2018.12.002en
dc.referencesRuiz-Alba, J.L., & Martín-Penã, M.-L. (2020). Guest editorial. Journal of Business & Industrial Marketing, 35(3), 385–389. https://doi.org/10.1108/JBIM-03-2020-419en
dc.referencesRutz, O., Aravindakshan, A., & Rubel, O. (2019). Measuring and forecasting mobile game app engagement. International Journal of Research in Marketing, 36(2), 185–199. https://doi.org/10.1016/j.ijresmar.2019.01.002en
dc.referencesSantini, F. de O., Ladeira, W., Jr., & Sampaio, C.H. (2018). The role of satisfaction in fashion marketing: A meta-analysis. Journal of Global Fashion Marketing, 9(4), 305–321. https://doi.org/10.1080/20932685.2018.1503556en
dc.referencesSchamari, J., & Schaefers, T. (2015). Leaving the home turf: How brands can use webcare on consumer-generated platforms to increase positive consumer engagement. Journal of Interactive Marketing, 30(1), 20–33. https://doi.org/10.1016/j.intmar.2014.12.001en
dc.referencesSchuetzler, R.M., Grimes, G.M., & Giboney, J.S. (2019). The effect of conversational agent skill on user behavior during deception. Computers in Human Behavior, 97, 250–259. https://doi.org/10.1016/j.chb.2019.03.033en
dc.referencesShin, H.H., Jeong, M., So, K.K.F., & DiPietro, R. (2022). Consumers’ experience with hospitality and tourism technologies: Measurement development and validation. International Journal of Hospitality Management, 106, Article 103297. https://doi.org/10.1016/j.ijhm.2022.103297en
dc.referencesShumanov, M., & Johnson, L. (2021). Making conversations with chatbots more personalized. Computers in Human Behavior, 117, Article 106627. https://doi.org/10.1016/j.chb.2020.106627en
dc.referencesSia, P.Y.-H., Saidin, S.S., & Iskandar, Y.H.P. (2022). Systematic review of mobile travel apps and their smart features and challenges. Journal of Hospitality and Tourism Insights, 6(5), 2115–2138. https://doi.org/10.1108/JHTI-02-2022-0087en
dc.referencesStokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. Nature, 614(7947), 214–216. https://doi.org/10.1038/d41586-023-00340-6en
dc.referencesSun, W., Tang, S., & Liu, F. (2021). Examining perceived and projected destination image: A social media content analysis. Sustainability, 13(6), Article 3354. https://doi.org/10.3390/su13063354en
dc.referencesSundar, S.S., Go, E., Kim, H.-S., & Zhang, B. (2015). Communicating art, virtually! Psychological effects of technological affordances in a virtual museum. International Journal of Human–Computer Interaction, 31(6), 385–401. https://doi.org/10.1080/10447318.2015.1033912en
dc.referencesSusnjak, T. (2022). ChatGPT: The end of online exam integrity? arXiv – Cornell University. https://doi.org/10.48550/arXiv.2212.09292en
dc.referencesTaecharungroj, V. (2023). “What can ChatGPT do?”: Analyzing early reactions to the innovative AI chatbot on Twitter. Big Data and Cognitive Computing, 7(1), Article 35. https://doi.org/10.3390/bdcc7010035en
dc.referencesTarantino, E., De Falco, I., & Scafuri, U. (2019). A mobile personalized tourist guide and its user evaluation. Information Technology & Tourism, 21(3), 413–455. https://doi.org/10.1007/s40558-019-00150-5en
dc.referencesTsai, W.-H.S., Liu, Y., & Chuan, C.-H. (2021). How chatbots’ social presence communication enhances consumer engagement: The mediating role of parasocial interaction and dialogue. Journal of Research in Interactive Marketing, 15(3), 460–482. https://doi.org/10.1108/JRIM-12-2019-0200en
dc.referencesTussyadiah, I., & Miller, G. (2019). Perceived impacts of artificial intelligence and responses to positive behaviour change intervention. In J. Pesonen & J. Neidhardt (Eds.), Information and Communication Technologies in Tourism 2019: Proceedings of the International Conference in Nicosia, Cyprus, January 30–February 1, 2019 (pp. 359–370). Springer. https://doi.org/10.1007/978-3-030-05940-8_28en
dc.referencesVendemia, M.A. (2017). When do consumers buy the company? Perceptions of interactivity in company-consumer interactions on social networking sites. Computers in Human Behavior, 71, 99–109. https://doi.org/10.1016/j.chb.2017.01.046en
dc.referencesWalters, G., Jiang, Y., & Li, S. (2025). Physiological measurements in hospitality and tourism research: A systematic review and new theoretical directions. Journal of Hospitality & Tourism Research, 49(3), 417–432. https://doi.org/10.1177/10963480231199990en
dc.referencesWang, D., & Cheung, C. (2024). Decent work in tourism and hospitality – a systematic literature review, classification, and research recommendations. International Journal of Contemporary Hospitality Management, 36(7), 2194–2213. https://doi.org/10.1108/IJCHM-10-2022-1263en
dc.referencesWang, R., Yang, F., Zheng, S., & Sundar, S.S. (2016). Why do we pin? New gratifications explain unique activities in Pinterest. Social Media + Society, 2(3). https://doi.org/10.1177/2056305116662173en
dc.referencesWong, I.A., Lian, Q.L., & Sun, D. (2023). Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. Journal of Hospitality and Tourism Management, 56, 253–263. https://doi.org/10.1016/j.jhtm.2023.06.022en
dc.referencesWong, I.A., Lin, S.K., Lin, Z.(CJ)., & Xiong, X. (2022). Welcome to stay-at-home travel and virtual attention restoration. Journal of Hospitality and Tourism Management, 51, 207–217. https://doi.org/10.1016/j.jhtm.2022.03.016en
dc.referencesWu, H.-C., & Cheng, C.-C. (2018). Relationships between technology attachment, experiential relationship quality, experiential risk and experiential sharing intentions in a smart hotel. Journal of Hospitality and Tourism Management, 37, 42–58. https://doi.org/10.1016/j.jhtm.2018.09.003en
dc.referencesXiang, Z., Magnini, V.P., & Fesenmaier, D.R. (2015). Information technology and consumer behavior in travel and tourism: Insights from travel planning using the internet. Journal of Retailing and Consumer Services, 22, 244–249. https://doi.org/10.1016/j.jretconser.2014.08.005en
dc.referencesXu, W., & Zhang, X. (2021). Online expression as well-be(com)ing: A study of travel blogs on Nepal by Chinese female tourists. Tourism Management, 83, Article 104224. https://doi.org/10.1016/j.tourman.2020.104224en
dc.referencesYao, Y., Jia, G., & Hou, Y. (2021). Impulsive travel intention induced by sharing conspicuous travel experience on social media: A moderated mediation analysis. Journal of Hospitality and Tourism Management, 49, 431–438. https://doi.org/10.1016/j.jhtm.2021.10.012en
dc.referencesZhou, G., Chu, G., Li, L., & Meng, L. (2020). The effect of artificial intelligence on China’s labor market. China Economic Journal, 13(1), 24–41. https://doi.org/10.1080/17538963.2019.1681201en
dc.contributor.authorEmailGhasemi, Vahid - v.ghasemi@outlook.com
dc.contributor.authorEmailYarahmadi, Parichehr - parichehr.yarahmadid@unica.it
dc.contributor.authorEmailKuhzady, Salar - s.kuhzady@uok.ac.ir
dc.identifier.doi10.18778/0867-5856.2025.06
dc.relation.volume35


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

https://creativecommons.org/licenses/by-nc-nd/4.0
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako https://creativecommons.org/licenses/by-nc-nd/4.0