dc.contributor.author | Olejnik, Alicja | |
dc.date.accessioned | 2015-07-02T09:54:39Z | |
dc.date.available | 2015-07-02T09:54:39Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/10461 | |
dc.description.abstract | This study presents some remarks on procedure for space-time process investigation by the
use of multidimensional panel spatial autoregressive model. It is shown that information on the
strength and significance of the spatial interactions is given by the model. Motivation for the use
of multidimensional dependence structure as well as some empirical examples are provided.
It is argued that such approach could allow for more accurate description of the spatial dependence,
whose true form often has a spatio-temporal character. It is emphasised that failure to recognise
these multidimensional effects may lead to incorrect inference and therefore to biased conclusions. | pl_PL |
dc.description.abstract | Przedmiotem referatu jest ocena procesu przestrzenno-czasowego z zastosowaniem wielowymiarowej
macierzy wag przestrzennych. W szczególności zakłada się, że podejście wielowymiarowe
pozwala na lepszy opis struktury zależności przestrzennych. Praca ma na celu pokazać
nowo opracowaną metodologię dotyczącą wielowymiarowego autoregresyjnego modelu przestrzennego
WAMP z uwzględnieniem wymiaru czasowego. Zatem całość rozważań stanowi nowy
element ekonometrii przestrzennej, a poprzez włączenie dodatkowej informacji na temat badanego
zjawiska umożliwia wnikliwszą jego analizę. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis, Folia Oeconomica;292 | |
dc.title | Assessing the Space-Time Structure with a Multidimensional Perspective | pl_PL |
dc.title.alternative | Zastosowanie podejścia wielowymiarowego do oceny struktury przestrzennoczasowej zjawisk ekonomicznych | pl_PL |
dc.type | Article | pl_PL |
dc.page.number | [37]-45 | pl_PL |
dc.contributor.authorAffiliation | University of Lodz | pl_PL |
dc.references | Anselin L. (1988), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht | pl_PL |
dc.references | AnselinL., Bera A.K. (1998), Spatial dependence in linear regression models with an introduction to spatial econometrics,(in:) Ullah A., Giles D. (eds.), Handbook of Applied Economic Statistics, Marcel Dekker, New York | pl_PL |
dc.references | Anselin L., Smirnov O. (1996), Efficient algorithms for constructing proper higher order spatial lag operators, Journal of Regional Science, Wiley, 36 | pl_PL |
dc.references | Besner C. (2002), A Spatial Autoregressive Specification with a Comparable Sales Weighting Scheme, Journal of Real Estate Research, American Real Estate Society, New York, 24 | pl_PL |
dc.references | Bodson P., Peeters D. (1975), Estimations of the Coefficients of a Linear Regression in the Presence of Spatial Autocorrelation: An Application to a Belgian Labour-Demand Function,‘ Environment and Planning’ A 7 (4) | pl_PL |
dc.references | Cliff A., Ord, J.K. (1981), Spatial Processes: Models and Applications, London: Pion | pl_PL |
dc.references | Dacey M.F. (1968), A Review of Measures of Contiguity for Two and K-Color Maps,(in): Englewood Cliffs SpatialAnalysis: A Reader in Statistical Geography, Prentice-Hall | pl_PL |
dc.references | Deng M. (2008), An anisotropic Model For Spatial Processes, Geographical Analysis, Wiley 40(1) | pl_PL |
dc.references | EUROSTAT (2002), European regional Statistics. Reference guide, European Communities, Luxembourg | pl_PL |
dc.references | Fingleton B. (2006),The new economic geography versus urban economics: an evaluation usinglocal wage rates in Great Britain, Oxford Economic Papers, 58 | pl_PL |
dc.references | Fujita M., Krugman P., Venables A. (1999), The Spatial Economy: Cities, Regions, and International Trade, MIT Press, Cambridge MA | pl_PL |
dc.references | Getis A., Aldstadt J.(2004), Constructing the Spatial Weights Matrix Using A Local Statistic,‘ Geographical Analysis’,Wiley, 36 | pl_PL |
dc.references | Kelejian H.H., Prucha I.R. (1998), A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, ‘Journal of Real Estate Finance and Economics’, Springer, 17 | pl_PL |
dc.references | Mankiw N., Romer D. Weil D. (1992), A contribution to the Empirics of Growth, Quarterly Journal of Economics, 107 | pl_PL |
dc.references | Olejnik A. (2008), Using the spatial autoregressively distributed lag model in assessing the regional convergence of per-capita income in the EU25, Papers in Regional Science, Wiley, 87/3 | pl_PL |
dc.references | Olejnik A. (2012a), Multidimensional spatial process of productivity growth in EU 22, working paper | pl_PL |
dc.references | Olejnik A. (2012b), Spatial autoregressive model – a multidimensional perspective with an example study of the spatial income process in the EU 25, working paper | pl_PL |
dc.references | Ord J.K., Getis A. (1995), Local Spatial Autocorrelation Statistics: Distributional Issues and an Application,‘Geographical Analysis’ 27 | pl_PL |