dc.contributor.author | Baszczyńska, Aleksandra | |
dc.date.accessioned | 2015-11-26T15:46:35Z | |
dc.date.available | 2015-11-26T15:46:35Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0208-6018 | |
dc.identifier.uri | http://hdl.handle.net/11089/14484 | |
dc.description.abstract | The paper presents chosen methods for estimating the ROC (Receiver Operating Characteristic) curve, including parametric and nonparametric procedures. Nonparametric approach may involve the use of empirical method or kernel method of the ROC curve estimation. In the analysis, an attempt to compare empirical and kernel ROC estimators is made, considering the impact of sample size, choice of smoothing parameter and kernel function in kernel estimation on the results of the estimation. Based on the results of simulation studies some suggestions, useful in the procedures of nonparametric ROC curve, are offered. | pl_PL |
dc.description.abstract | W pracy rozważane są wybrane metody estymacji krzywej ROC (Receiver Operating Characteristic), w tym metody parametryczne i nieparametryczne. Podejście nieparametryczne może oznaczać zastosowanie empirycznego estymatora krzywej ROC lub estymatora jądrowego. Podjęta jest próba porównania estymacji empirycznej oraz jądrowej ze szczególnym uwzględnieniem wpływu liczebności próby, jak również metody wyboru parametru wygładzania i funkcji jądra na rezultat procedury estymacyjnej. W oparciu o wyniki badania symulacyjnego określone są wskazówki użyteczne w procedurach estymacji krzywej ROC. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartofseries | Acta Universitatis Lodziensis. Folia Oeconomica;311 | |
dc.subject | ROC curve | pl_PL |
dc.subject | empirical estimator | pl_PL |
dc.subject | kernel method | pl_PL |
dc.subject | smoothing parameter | pl_PL |
dc.subject | kernel function | pl_PL |
dc.subject | krzywa ROC | pl_PL |
dc.subject | funkcja jądra | pl_PL |
dc.subject | parametr wygładzania | pl_PL |
dc.title | Empirical and Kernel Estimation of the ROC Curve | pl_PL |
dc.title.alternative | Empiryczny i jądrowy estymator krzywej ROC | pl_PL |
dc.type | Article | pl_PL |
dc.rights.holder | © Copyright by Uniwersytet Łódzki, Łódź 2015 | pl_PL |
dc.page.number | [49]-55 | pl_PL |
dc.contributor.authorAffiliation | Chair of Statistical Methods, University of Łódź. | pl_PL |
dc.identifier.eissn | 2353-7663 | |
dc.references | Chrzanowski M. (2014), Weighted Empirical Likelihood Inference for the Area under the ROC Curve, Journal of Statistical Planning and Inference, 147, 159–172. | pl_PL |
dc.references | Domański C., Pekasiewicz D., Baszczyńska A., Witaszczyk A. (2014), Testy statystyczne w procesie podejmowania decyzji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź. | pl_PL |
dc.references | Fawcett T. (2006), An Introduction to ROC Analysis, Pattern Recognition Letters, 27, 861–874. | pl_PL |
dc.references | Harańczyk G. (2010), Krzywe ROC, czyli ocena jakości klasyfikatora i poszukiwanie optymalnego punktu odcięcia, Statsoft Polska, www.statsoft.pl/czytelnia.html. | pl_PL |
dc.references | Horová I., Koláček J., Zelinka J. (2012), Kernel Smoothing in Matlab. Theory and Practice of Kernel Smoothing, World Scientific, New Jersey. | pl_PL |
dc.references | Krzanowski W., Hand D. (2009), ROC Curves for Continuous Data, CRC Press. | pl_PL |
dc.references | Krzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008), Systemy uczące się. Rozpoznawanie wzorców, analiza skupień i redukcja wymiarowości, Wydawnictwa Naukowo-Techniczne, Warszawa. | pl_PL |
dc.references | Lloyd C. (2002), Estimation of a Convex ROC Curves, Statistics and Probability Letters, 59, 1, 99–111. | pl_PL |
dc.references | Marron J., Wand M. (1992), Exact Mean Integrated Squared Error, The Annals of Statistics, 20, 2, 712–736. | pl_PL |
dc.references | Misztal M. (2014), On the Selected Methods for Evaluating Classification Models, Acta Universitatis Lodziensis Folia Oeconomica , 3 (302), 161–173. | pl_PL |
dc.references | Ruzgas T., Drulyrè I. (2013), Kernel Density Estimation for Gaussian Mixture Models, Lithuanian Journal of Statistics, 52, 1, 14–21. | pl_PL |
dc.identifier.doi | 10.18778/0208‐6018.311.06 | |
dc.relation.volume | 1 | pl_PL |