Pokaż uproszczony rekord

dc.contributor.authorNowak, Marek
dc.date.accessioned2017-05-16T10:01:03Z
dc.date.available2017-05-16T10:01:03Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/21624
dc.description.abstractThe paper deals with a generalization of the notion of partition for wider classes of binary relations than equivalences: for quasiorders and tolerance relations. The counterpart of partition for the quasiorders is based on a generalization of the notion of equivalence class while it is shown that such a generalization does not work in case of tolerances. Some results from [5] are proved in a much more simple way. The third kind of “partition” corresponding to tolerances, not occurring in [5], is introduced.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;2
dc.subjectpartitionen_GB
dc.subjectquasiorderen_GB
dc.subjecttolerance relationen_GB
dc.titleQuasiorders, Tolerance Relations and Corresponding “Partitions”en_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[65]-78
dc.contributor.authorAffiliationUniversity of Łódź, Department of Logic
dc.identifier.eissn2449-836X
dc.referencesI. Chajda, J. Niederle, B. Zelinka, On existence conditions for compatible tolerances, Czechoslovak Math. J. 26 (1976), pp. 304–311.en_GB
dc.referencesG. Czédli, Factor lattices by tolerances, Acta Scientiarum Mathematicarum 44 (1982), pp. 35–42.en_GB
dc.referencesS. N. Gerasin, V. V. Shlyakhov, S. V. Yakovlev, Set coverings and tolerance relations, Cybernetics and System Analysis 44 (2008), pp. 333–340.en_GB
dc.referencesA. I. Krivoruchko, Tolerance classes, Cybernetics and System Analysis 20 (1984), pp. 6–11.en_GB
dc.referencesM. Nowak, On some generalization of the concept of partition, Studia Logica 102 (2014), pp. 93–116.en_GB
dc.referencesJ. Pogonowski, Tolerance spaces with application to linguistics, Adam Mickiewicz University Press, Poznań, 1981.en_GB
dc.referencesE. C. Zeeman, The Topology of the Brain and Visual Perception, [in:] M. K. Fort (ed.), The Topology of 3-Manifolds and Related Topics, 1962, pp. 240–256.en_GB
dc.referencesB. Zelinka, A remark on systems of maximal cliques of a graph, Czechoslovak Math. J. 27 (1977), pp. 617–618.en_GB
dc.contributor.authorEmailmarnowak@filozof.uni.lodz.pl
dc.identifier.doi10.18778/0138-0680.45.2.01
dc.relation.volume45en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord