Pokaż uproszczony rekord

dc.contributor.authorVoutsadakis, George
dc.date.accessioned2017-05-16T10:01:06Z
dc.date.available2017-05-16T10:01:06Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/21627
dc.description.abstractBabenyshev and Martins proved that two hidden multi-sorted deductive systems are deductively equivalent if and only if there exists an isomorphism between their corresponding lattices of theories that commutes with substitutions. We show that the -institutions corresponding to the hidden multi-sorted deductive systems studied by Babenyshev and Martins satisfy the multi-term condition of Gil-Férez. This provides a proof of the result of Babenyshev and Martins by appealing to the general result of Gil-Férez pertaining to arbitrary multi-term -institutions. The approach places hidden multi-sorted deductive systems in a more general framework and bypasses the laborious reuse of well-known proof techniques from traditional abstract algebraic logic by using “off the shelf” tools.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;2
dc.subjectBehavioral Equivalenceen_GB
dc.subjectHidden Logicen_GB
dc.subjectMulti-Sorted Logicen_GB
dc.subjectMulti-term -Institutionsen_GB
dc.subjectInterpretabilityen_GB
dc.subjectDeductive Equivalenceen_GB
dc.titleCategorical Abstract Logic: Hidden Multi-Sorted Logics as Multi-Term Institutionsen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[111]-124
dc.contributor.authorAffiliationLake Superior State University, School of Mathematics and Computer Science
dc.identifier.eissn2449-836X
dc.referencesS. Babenyshev and M. A. Martins, Behavioral Equivalence of Hidden k-Logics: An Abstract Algebraic Approach, Journal of Applied Logic, Vol. 16 (2016), pp. 72–91.en_GB
dc.referencesM. Barr and C. Wells, Category Theory for Computing Science, Third Edition, Les Publications CRM, Montréal, 1999.en_GB
dc.referencesW. J. Blok and B. Jónsson, Equivalence of Consequence Operations, Studia Logica, Vol. 83, No. 1/3 (2006), pp. 91–110.en_GB
dc.referencesW. J. Blok and D. Pigozzi, Algebraizable Logics, Memoirs of the American Mathematical Society, Vol. 77, No. 396 (1989).en_GB
dc.referencesC. Caleiro, R. Gon calves and M. Martins, Behavioral Algebraization of Logics, Studia Logica, Vol. 91, No. 1 (2009), pp. 63–111.en_GB
dc.referencesJ. M. Font and T. Moraschini, M-Sets and the Representation Problem, Studia Logica, Vol. 103, No. 1 (2015), pp. 21–51.en_GB
dc.referencesGalatos, N., and N. Galatos, J. Gil-Férez, Modules over Quantaloids: Applications to the Isomorphism Problem in Algebraic Logic and -institutions, Journal of Pure and Applied Algebra, Vol. 221, No. 1 (2017), pp. 1–24.en_GB
dc.referencesN. Galatos and C. Tsinakis, Equivalence of Closure Operators: an Order-Theoretic and Categorical Perspective, The Journal of Symbolic Logic, Vol. 74, No. 3 (2009), pp. 780–810.en_GB
dc.referencesJ. Gil-Férez, Multi-term -Institutions and their Equivalence, Mathematical Logic Quarterly, Vol. 52, No. 5 (2006), pp. 505–526.en_GB
dc.referencesM. A. Martins, Behavioral Reasoning in Generalized Hidden Logics, Ph.D. Thesis, Faculdade de Ciências, University of Lisbon, 2004.en_GB
dc.referencesM. A. Martins and D. Pigozzi, Behavioural Reasoning for Conditional Equations, Mathematical Structures in Computer Science, Vol. 17 (2007), pp. 1075–1113.en_GB
dc.referencesD. Sannella and A. Tarlecki, Foundations of Algebraic Specification and Formal Software Development, EATCS Monographs in Theoretical Computer Science, Springer 2012.en_GB
dc.referencesG. Voutsadakis, Categorical Abstract Algebraic Logic: Equivalent Institutions, Studia Logica, Vol. 74 (2003), pp. 275–311.en_GB
dc.referencesG. Voutsadakis, Categorical Abstract Algebraic Logic: Behavioral -Institutions, Studia Logica, Vol. 102, No. 3 (2014), pp. 617–646.en_GB
dc.contributor.authorEmailgvoutsad@lssu.edu
dc.identifier.doi10.18778/0138-0680.45.2.04
dc.relation.volume45en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord