Pokaż uproszczony rekord

dc.contributor.authorIndrzejczak, Andrzej
dc.date.accessioned2017-05-16T10:01:07Z
dc.date.available2017-05-16T10:01:07Z
dc.date.issued2016
dc.identifier.issn0138-0680
dc.identifier.urihttp://hdl.handle.net/11089/21628
dc.description.abstractIn the paper a decision procedure for S5 is presented which uses a cut-free sequent calculus with additional rules allowing a reduction to normal modal forms. It utilizes the fact that in S5 every formula is equivalent to some 1-degree formula, i.e. a modally-flat formula with modal functors having only boolean formulas in its scope. In contrast to many sequent calculi (SC) for S5 the presented system does not introduce any extra devices. Thus it is a standard version of SC but with some additional simple rewrite rules. The procedure combines the proces of saturation of sequents with reduction of their elements to some normal modal form.en_GB
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesBulletin of the Section of Logic;2
dc.subjectModal logic S5en_GB
dc.subjectdecidabilityen_GB
dc.subjectnormal formsen_GB
dc.subjectsequent calculusen_GB
dc.titleSimple Decision Procedure for S5 in Standard Cut-Free Sequent Calculusen_GB
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[125]-140
dc.contributor.authorAffiliationUniversity of Łódź, Department of Logic
dc.identifier.eissn2449-836X
dc.referencesA. Avron, A Constructive Analysis of RM, Journal of Symbolic Logic 52 (1987), pp. 939–951.en_GB
dc.referencesA. Avron, The method of hypersequents in the proof theory of propositional non-classical logic, [in:] W. Hodges, M. Hyland, C. Steinhorn, and J. Strauss, editors, Logic: from Foundations to Applications, Oxford University Press, Oxford (1996), pp. 1–32.en_GB
dc.referencesK. Bednarska and A. Indrzejczak, Hypersequent calculi for S5 - the methods of cut elimination, Logic and Logical Philosophy 24/3 (2015), pp. 277–311.en_GB
dc.referencesN. D. Belnap, Display Logic, Journal of Philosophical Logic 11(1982), pp. 375–417.en_GB
dc.referencesT. Braüner, A cut-free Gentzen formulation of the modal logic S5, Logic Journal of the IGPL 8 (2000), pp. 629–643.en_GB
dc.referencesT. Brünnler, A cut-free Gentzen formulation of the modal logic S5, Logic Journal of the IGPL 8 (2000), pp. 629–643.en_GB
dc.referencesR. Carnap, Modalities nad quantification, Journal of Symbolic Logic 11 (1946), pp. 33–64.en_GB
dc.referencesL. Farinas del Cerro and A. Herzig, Modal Deduction with Applications in Epistemic and Temporal Logics, [in:] D. Gabbay et all. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. IV, Clarendon Press, Oxford 1995, pp. 499–594.en_GB
dc.referencesM. Fitting, Proof Methods for Modal and Intuitionistic Logics, Reidel, Dordrecht 1983.en_GB
dc.referencesM. Fitting, Simple propositional S5 tableau system, Annals of Pure and Applied Logic 96 (1999), pp. 101–115.en_GB
dc.referencesR. Goré, Tableau Methods for Modal and Temporal Logics, [in:] M. D’Agostino et al. (eds.), Handbook of Tableau Methods, Kluwer Academic Publishers, Dordrecht 1999, pp. 297–396.en_GB
dc.referencesG. E. Hughes, M. J. Cresswell, A New Introduction to Modal Logic, Routledge, London 1996.en_GB
dc.referencesA. Indrzejczak, Cut-free double sequent calculus for S5, Logic Journal of the IGPL 6 (1998), pp. 505–516.en_GB
dc.referencesS. Kanger, Provability in Logic, Almqvist Wiksell, Stockholm 1957.en_GB
dc.referencesS. Kripke, Semantical Analysis of Modal Logic I, Zeitschrift f¨ur Mathematische Logik und Grundlegen der Mathematik 9 (1963), pp. 67–96.en_GB
dc.referencesH. Kurokawa, Hypersequent Calculi for Modal Logics Extending S4, [in:] New Frontiers in Artificial Intelligence, Springer 2014, pp. 51–68.en_GB
dc.referencesO. Lahav, From Frame Properties to Hypersequent Rules in Modal Logics, [in:] Proceedings of LICS, Springer 2013, pp. 408–417.en_GB
dc.referencesB. Lellmann, D. Pattinson, Correspondence between Modal Jilbert Axioms and Sequent Rules with an Application to S5, [in:] D. Galmiche, D. Larchey-Wendling (eds.), TABLEAUX 2013. LNCS, vol. 8132, Springer 2013, pp. 219–233.en_GB
dc.referencesG. Mints, Cut-free calculi of the S5 type, Studies in Constructive Mathematics and Mathematical Logic II (1970), pp. 79–82.en_GB
dc.referencesS. Negri, Proof Analysis in Modal Logic, Journal of Philosophical Logic 34 (2005), pp. 507–544.en_GB
dc.referencesM. Ohnishi, K. Matsumoto, Gentzen Method in Modal Calculi I, Osaka Mathematical Journal 9 (1957), pp. 113–130.en_GB
dc.referencesM. Ohnishi, K. Matsumoto, Gentzen Method in Modal Calculi II, Osaka Mathematical Journal 11 (1959), pp. 115–120.en_GB
dc.referencesF. Poggiolesi, A Cut-free Simple Sequent Calculus for Modal Logic S5, Review of Symbolic Logic 1 (2008), pp. 3–15.en_GB
dc.referencesF. Poggiolesi, Reflecting the semantic features of S5 at the syntactic level, [in:] New Essays in Logic and Philosophy of Science, M. D’Agostino, G. Giorell, F. Laudisa, T. Pievani, C. Singaglia (eds.), London College Publications, 2010, pp. 13–25.en_GB
dc.referencesF. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, Springer 2011.en_GB
dc.referencesG. Pottinger, Uniform cut-free formulations of T, S4 and S5 (abstract), Journal of Symbolic Logic 48 (1983), p. 900.en_GB
dc.referencesD. Prawitz, Natural Deduction, Almqvist and Wiksell, Stockholm 1965.en_GB
dc.referencesG. Restall, Proofnets for S5: sequents and circuits for modal logic, [in:] Lecture Notes in Logic 28 (2007), pp. 151–172.en_GB
dc.referencesM. Sato, A Study of Kripke-type Models for Some Modal Logics by Gentzen’s Sequential Method, Publications of the Research Institute for Mathematical Sciences, Kyoto University 1977, 13, pp. 381–468.en_GB
dc.referencesT. Skura, Refutation methods in propositional modal logics, Semper 2013.en_GB
dc.referencesP. Stouppa, The design of modal proof theories: the case of S5, Master Thesis, Dresden 2004.en_GB
dc.referencesP. Stouppa, A deep inference system for the modal logic S5, Studia Logica 85 (2007), pp. 199–214.en_GB
dc.referencesM. Takano, Subformula Property as a substitute for Cut-Elimination in Modal Propositional Logics, Mathematica Japonica 37/6 (1992), pp. 1129–1145.en_GB
dc.referencesM. Wajsberg, Ein erweiteter Klassenkalkül, Monatshefte f¨ur Mathematik unf Physik 40 (1933), pp. 113–126.en_GB
dc.referencesH. Wansing, Displaying Modal Logics, Kluwer Academic Publishers, Dordrecht 1999.en_GB
dc.referencesJ. J. Zeman, Modal Logic, Oxford University Press, Oxford 1973.en_GB
dc.contributor.authorEmailindrzej@filozof.uni.lodz.pl
dc.identifier.doi10.18778/0138-0680.45.2.05
dc.relation.volume45en_GB


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord