Pokaż uproszczony rekord

dc.contributor.authorTrzpiot, Grażyna
dc.contributor.authorOrwat-Acedańska, Agnieszka
dc.date.accessioned2017-05-22T08:48:18Z
dc.date.available2017-05-22T08:48:18Z
dc.date.issued2016
dc.identifier.issn0208-6018
dc.identifier.urihttp://hdl.handle.net/11089/21746
dc.description.abstractThe paper concerns mortality in Poland. The aim of the article is to identify factors determining average life length of men and women in 66 subregions of Poland. We use spatial quantile regression methodology which allows studying dependencies between variables in different quantiles of the response distribution. Moreover, this statistical tool is robust against violations of the classical regression assumption about the multidimensional distribution of error term.en_GB
dc.description.abstractArtykuł podejmuje problem analizy umieralności w Polsce. Celem pracy jest badanie wpływu wybranych czynników na średnią długość życia kobiet i mężczyzn w 66 podregionach Polski. Stosujemy modele kwantylowej autoregresji przestrzennej. W analizie wykorzystujemy metodologię wielorakiej regresji kwantylowej, która umożliwia analizę zależności pomiędzy zmiennymi w różnych kwantylach Rozkładu zmiennej niezależnej. Ponadto narzędzie to jest odporne na założenie klasycznej regresji dotyczące postaci wielowymiarowego rozkładu składnika losowego.pl_PL
dc.language.isoenen_GB
dc.publisherWydawnictwo Uniwersytetu Łódzkiegoen_GB
dc.relation.ispartofseriesActa Universitatis Lodziensis. Folia Oeconomica;325
dc.subjectquantile regressionen_GB
dc.subjectanalysis of mortalityen_GB
dc.subjectspatial analysisen_GB
dc.subjectregresja kwantylowapl_PL
dc.subjectanaliza umieralnościpl_PL
dc.subjectanaliza przestrzennapl_PL
dc.titleSpatial quantile regression in analysis of mortalityen_GB
dc.title.alternativePrzestrzenna regresja kwantylowa w analizie umieralnościpl_PL
dc.typeArticleen_GB
dc.rights.holder© Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016en_GB
dc.page.number[181]-196
dc.contributor.authorAffiliationUniversity of Economics in Katowice
dc.identifier.eissn2353-7663
dc.referencesAnselin L. (1998), Spatial Econometrics: Methods and Models, Kluwer Academic Publishers, Netherlands.pl_PL
dc.referencesChernozhukov V., Chansen C. (2006), Instrumental Quantile Regression Inference for Structural and Treatment Effect Models, “Journal of Econometrics”, vol. 127, no. 2, p. 491–525, http://dx.doi.org/10.1016/j.jeconom.2005.02.009.pl_PL
dc.referencesKim T.H., Muller C. (2004), Two-stage quantile regression when the first stage is based on quantile regression, “Econometrics Journal”, vol. 7, no. 1, p. 218–231, http://dx.doi.org/10.1111/j.1368-423x.2004.00128.x.pl_PL
dc.referencesKoenker R., Bassett B. (1978), Regression Quantiles, “Econometrica”, vol. 46, no. 1, p. 33–50, http://dx.doi.org/10.2307/1913643.pl_PL
dc.referencesLife Expectancy Tables of Poland in 2014, Central Statistical Office, Warsaw, 2015.pl_PL
dc.referencesLee L.F. (2002), Consistency and efficiency of least squares estimation for mixed regressive, spatial autoregressive models, “Econometric Theory”, vol. 18, no. 2, p. 252–277, http://dx.doi.org/10.1017/s0266466602182028.pl_PL
dc.referencesLee L.F. (2007), GMM and 2SLS estimation of mixed regressive, spatial autoregressive models, “Journal of Econometrics”, vol. 137, no. 2, p. 489–514, http://dx.doi.org/10.1016/j.jeconom.2005.10.004.pl_PL
dc.referencesLeSage J.P., Pace R.K. (2009), Introduction to spatial econometrics, CRC Book Press, Boca Raton.pl_PL
dc.referencesLeSage J.P. (1997), Bayesian estimation of spatial autoregressive models, “International Regional Science Review”, vol. 20, no. 1–2, p. 113–129, http://dx.doi.org/10.1177/016001769702000107pl_PL
dc.referencesLum K., Gelfand A. (2012), Spatial quantile multiple regression using the asymmetric Laplace process, “Bayesian Analysis”, vol. 7, no. 2, p. 235–258, http://dx.doi.org/10.1214/12-ba708pl_PL
dc.referencesNational Health Program for 2016–2020, Appendix to the Resolution of the Cabinet on 15.05.2015, Warsaw.pl_PL
dc.referencesOrwat-Acedańska A., Trzpiot G. (2011), The classification of Polish mutual balanced funds based on the management style – quantile regression approach, “Research Papers of the University of Economics in Wrocław. Econometrics”, vol. 31, no. 194, p. 9–23.pl_PL
dc.referencesPortnoy S., Koenker R. (1997), The Gaussian Hare and the Laplacian Tortoise: Computability of Squared-Error Versus Absolute-Error Estimators, “Statistical Science”, vol. 12, no. 4, p. 279–300, http://dx.doi.org/10.1214/ss/1030037960.pl_PL
dc.referencesSuchecki B. (2010), Spatial Econometrics, Beck, Warszawa.pl_PL
dc.referencesTrzpiot G. (2008), The implementation of quantile regression methodology in VaR estimation (in Polish), “Studies and researches of Faculty of Economics and Management/University of Szczecin”, vol. 9, p. 316–323.pl_PL
dc.referencesTrzpiot G. (2009a), Quantile regression model versus factor model estimation, “Financial investments and insurances – world trends and Polish market”, University of Economics in Wrocław, vol. 60, p. 469–479.pl_PL
dc.referencesTrzpiot G. (2009b), Estimation methods for quantile regression, “Economics Studies” vol. 53, Karol Adamiecki University of Economics in Katowice, p. 81–90.pl_PL
dc.referencesTrzpiot G. (2010), Quantile regression model of return rate relation – volatility for some Warsaw Stock Exchange indexes, (in Polish),“Finances, financial markets and insurances. Capital market”,University of Szczecin, vol. 28, p. 61–76.pl_PL
dc.referencesTrzpiot G. (2012), Spatial Quantile Regression, ”Comparative Economic Research. Central and Eastern Europe”, vol. 15, no. 4, p. 265–279.pl_PL
dc.contributor.authorEmailgrazyna.trzpiot@ue.katowice.pl
dc.contributor.authorEmailagnieszka.orwat@ue.katowice.pl
dc.identifier.doi10.18778/0208-6018.325.14
dc.relation.volume5en_GB
dc.subject.jelJ11, C14, C30


Pliki tej pozycji

Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord