dc.contributor.author | Jędrzejewicz, Piotr | |
dc.contributor.editor | Krasiński, Tadeusz | |
dc.contributor.editor | Spodzieja, Stanisław | |
dc.date.accessioned | 2017-12-13T10:36:33Z | |
dc.date.available | 2017-12-13T10:36:33Z | |
dc.date.issued | 2013 | |
dc.identifier.citation | Jędrzejewicz P., Rings of constants of polynomial derivations and p-bases, [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 57-79, doi: 10.18778/7969-017-6.06 | pl_PL |
dc.identifier.isbn | 978-83-7969-017-6 | |
dc.identifier.uri | http://hdl.handle.net/11089/23610 | |
dc.description.abstract | We present a survey of results concerning p-bases of rings of constants with respect to polynomial derivations in characteristic p > 0. We discuss characterizations of rings of constants, properties of their generators and a general characterization of their p-bases. We also focus on some special cases: one-element p-bases, eigenvector p-bases and when a ring of constants
is a polynomial graded subalgebra. | pl_PL |
dc.language.iso | en | pl_PL |
dc.publisher | Wydawnictwo Uniwersytetu Łódzkiego | pl_PL |
dc.relation.ispartof | Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013; | |
dc.rights | Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/pl/ | * |
dc.title | Rings of constants of polynomial derivations and p-bases | pl_PL |
dc.type | Book chapter | pl_PL |
dc.rights.holder | © Copyright by University of Łódź, Łódź 2013 | pl_PL |
dc.page.number | 57-79 | pl_PL |
dc.contributor.authorAffiliation | Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruń | pl_PL |
dc.references | K. Adjamagbo, On separable algebras over a UFD and the Jacobian Conjecture in any characteristic, in: A. van den Essen (ed.), Automorphisms of A ne Spaces, Proceedings of the conference "Invertible Polynomial Maps", July 4{8, 1994, Cura cao, Caribbean Mathematics Foundation, Kluwer Academic Publishers, 1995. | pl_PL |
dc.references | I.V. Arzhantsev, A.P. Petravchuk, Closed polynomials and saturated subalgebras of polynomial algebras, Ukrainian Math. J. 59 (2007), 1783-1790. | pl_PL |
dc.references | M. Ayad, Sur les polynômes ƒ(X; Y ) tels que K[ƒ] est intégralement fermé dans K[X; Y ], Acta Arith. 105 (2002), 9-28. | pl_PL |
dc.references | D. Daigle, Plane Frobenius sandwiches of degree p, Proc. Amer. Math. Soc. 117 (1993), 885-889. | pl_PL |
dc.references | D. Daigle, Locally nilpotent derivations, Lecture notes for the "September School" of Algebraic Geometry, Łukęcin, Poland, September 2003 (unpublished), aix1.uottawa.ca/~ddaigle/. | pl_PL |
dc.references | A. van den Essen, An algorithm to compute the invariant ring of a Ga-action on an affine variety, J. Symbolic Comput., 16 (1993), 551-555. | pl_PL |
dc.references | A. van den Essen, Polynomial automorphisms and the Jacobian Conjecture, Birkhäuser Verlag, Basel, 2000. | pl_PL |
dc.references | A. van den Essen, A. Nowicki, A. Tyc, Generalizations of a lemma of Freudenburg, J. Pure Appl. Algebra 177 (2003), 43-47. | pl_PL |
dc.references | G. Freudenburg, A note on the kernel of a locally nilpotent derivation, Proc. Amer. Math. Soc. 124 (1996), 27-29. | pl_PL |
dc.references | G. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences 136, Springer Verlag, Berlin, 2006. | pl_PL |
dc.references | R. Ganong, Plane Frobenius sandwiches, Proc. Amer. Math. Soc. 84 (1982), 474-478. | pl_PL |
dc.references | M. Gerstenhaber, On the Galois theory of inseparable extensions, Bull. Amer. Math. Soc. 70 (1964), 561-566. | pl_PL |
dc.references | M. Gerstenhaber, On infinite inseparable extensions of exponent one, Bull. Amer. Math. Soc. 71 (1965), 878-881. | pl_PL |
dc.references | D. Goss, Basic structures of function field arithmetic, Springer, Berlin, 1996. | pl_PL |
dc.references | N. Jacobson, Lectures in abstract algebra, vol. III, D. Van Nostrand, Princeton, 1964. | pl_PL |
dc.references | P. Jędrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501-5511. | pl_PL |
dc.references | P. Jędrzejewicz, A note on characterizations of rings of constants with respect to derivations, Colloq. Math. 99 (2004), 51-53. | pl_PL |
dc.references | P. Jędrzejewicz, On rings of constants of derivations in two variables in positive characteristic, Colloq. Math. 106 (2006), 109-117. | pl_PL |
dc.references | P. Jędrzejewicz, Eigenvector p-bases of rings of constants of derivations, Comm. Algebra 36 (2008), 1500-1508. | pl_PL |
dc.references | P. Jędrzejewicz, Linear derivations with rings of constants generated by linear forms, Colloq. Math. 113 (2008), 279-286. | pl_PL |
dc.references | P. Jędrzejewicz, A characterization of one-element p-bases of rings of constants, Bull. Pol. Acad. Sci. Math. 59 (2011), 19-26. | pl_PL |
dc.references | P. Jędrzejewicz, A note on rings of constants of derivations in integral domains, Colloq. Math. 122 (2011), 241-245. | pl_PL |
dc.references | P. Jędrzejewicz, Positive characteristic analogs of closed polynomials, Cent. Eur. J. Math. 9 (2011), 50-56. | pl_PL |
dc.references | P. Jędrzejewicz, Jacobian conditions for p-bases, Comm. Algebra 40 (2012), 2841-2852. | pl_PL |
dc.references | P. Jędrzejewicz, A characterization of Keller maps, J. Pure Appl. Algebra 217 (2013), 165-171. | pl_PL |
dc.references | P. Jędrzejewicz, A characterization of p-bases of rings of constants, Cent. Eur. J. Math. 11 (2013), 900-909. | pl_PL |
dc.references | P. Jędrzejewicz, A. Nowicki, Subalgebras of polynomial algebras containing prime powers of variables, in: Materiały na XXXII Konferencję Szkoleniową z Geometrii Analitycznej i Algebraicznej Zespolonej, Lódź, 2011, 11-21. | pl_PL |
dc.references | P. Jędrzejewicz, A. Nowicki, Polynomial graded subalgebras of polynomial algebras, Comm. Algebra 40 (2012), 2853-2866. | pl_PL |
dc.references | T. Kimura, H. Niitsuma, A note on p-basis of a polynomial ring in two variables, SUT J. Math. 25 (1989), 33-38. | pl_PL |
dc.references | S. Kuroda, A counterexample to the Forteenth Problem of Hilbert in dimension four, J. Algebra 279 (2004), 126-134. | pl_PL |
dc.references | S. Kuroda, Fields defined by locally nilpotent derivations and monomials, J. Algebra 293 (2005), 395–406. | pl_PL |
dc.references | J. Lang, S. Mandal, On Jacobian n-tuples in characteristic p, Rocky Mountain J. Math. 23 (1993), 271–279. | pl_PL |
dc.references | W. Li, Remarks on rings of constants of derivations, Proc. Amer. Math. Soc. 107 (1989), 337–340. | pl_PL |
dc.references | W. Li, Remarks on rings of constants of derivations II, Comm. Algebra 20 (1992), 2191–2194. | pl_PL |
dc.references | H. Matsumura, Commutative algebra, 2nd ed., Benjamin, Reading, 1980. | pl_PL |
dc.references | M. Miyanishi, Normal affine subalgebras of a polynomial ring, in: Algebraic and Topological Theories, Kinokuniya, Tokyo, 1985, 37–51. | pl_PL |
dc.references | H. Niitsuma, Jacobian matrix and p-basis, TRU Math. 24 (1988), 19–34. | pl_PL |
dc.references | H. Niitsuma, Jacobian matrix and p-basis, in: Topics in algebra, 185–188, Banach Center Publ. 26, part 2, PWN, Warszawa 1990. | pl_PL |
dc.references | P. Nousiainen, On the Jacobian Problem (thesis), Pennsylvania State University, 1982. | pl_PL |
dc.references | A. Nowicki, On the Jacobian equation J (f, g) = 0 for polynomials in k[x, y], Nagoya Math. J. 109 (1988), 151–157. | pl_PL |
dc.references | A. Nowicki, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47–55. | pl_PL |
dc.references | A. Nowicki and M. Nagata, Rings of constants for k-derivations in k[x1, . . . , xn], J. Math. Kyoto Univ. 28 (1988), 111–118. | pl_PL |
dc.references | A. Nowicki, J.-M. Strelcyn, Generators of rings of constants for some diagonal deriva- tions in polynomial rings, J. Pure Appl. Algebra 101 (1995), 207–212. | pl_PL |
dc.references | S.-I. Okuda, Kernels of derivations in positive characteristic, Hiroshima Math. J. 34 (2004), 1–19. | pl_PL |
dc.references | T. Ono, A note on p-bases of a regular affine domain extension, Proc. Amer. Math. Soc. 136 (2008), 3079–3087. | pl_PL |
dc.references | A. Płoski, On the irreducibility of polynomials in several complex variables, Bull. Polish Acad. Sci. Math. 39 (1991), 241–247. | pl_PL |
dc.references | A. Schinzel, Polynomials with special regard to reducibility, Cambridge University Press, 2000. | pl_PL |
dc.references | S. Suzuki, Some types of derivations and their applications to field theory, J. Math. Kyoto Univ. 21 (1981), 375–382. | pl_PL |
dc.references | A. Zaks, Dedekind subrings of k[x1, . . . , xn] are rings of polynomials, Israel J. Math., 9 (1971), 285–289. | pl_PL |
dc.references | O. Zariski, P. Samuel, Commutative algebra, vol. I, D. Van Nostrand, New York, 1958. | pl_PL |
dc.references | A. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus University, Toruń, 1994, www.mat.umk.pl/~anow/ | pl_PL |
dc.references | O. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math., 78 (1954), 155-168. | pl_PL |
dc.contributor.authorEmail | pjedrzej@mat.umk.pl | pl_PL |
dc.identifier.doi | 10.18778/7969-017-6.06 | |