Pokaż uproszczony rekord

dc.contributor.authorJędrzejewicz, Piotr
dc.contributor.editorKrasiński, Tadeusz
dc.contributor.editorSpodzieja, Stanisław
dc.date.accessioned2017-12-13T10:36:33Z
dc.date.available2017-12-13T10:36:33Z
dc.date.issued2013
dc.identifier.citationJędrzejewicz P., Rings of constants of polynomial derivations and p-bases, [in:] Krasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013, s. 57-79, doi: 10.18778/7969-017-6.06pl_PL
dc.identifier.isbn978-83-7969-017-6
dc.identifier.urihttp://hdl.handle.net/11089/23610
dc.description.abstractWe present a survey of results concerning p-bases of rings of constants with respect to polynomial derivations in characteristic p > 0. We discuss characterizations of rings of constants, properties of their generators and a general characterization of their p-bases. We also focus on some special cases: one-element p-bases, eigenvector p-bases and when a ring of constants is a polynomial graded subalgebra.pl_PL
dc.language.isoenpl_PL
dc.publisherWydawnictwo Uniwersytetu Łódzkiegopl_PL
dc.relation.ispartofKrasiński T., Spodzieja S. (eds.), Analytic and Algebraic Geometry, Wydawnictwo Uniwersytetu Łódzkiego, Łódź 2013;
dc.rightsUznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska*
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/pl/*
dc.titleRings of constants of polynomial derivations and p-basespl_PL
dc.typeBook chapterpl_PL
dc.rights.holder© Copyright by University of Łódź, Łódź 2013pl_PL
dc.page.number57-79pl_PL
dc.contributor.authorAffiliationFaculty of Mathematics and Computer Science, Nicolaus Copernicus University, ul. Chopina 12/18, 87-100 Toruńpl_PL
dc.referencesK. Adjamagbo, On separable algebras over a UFD and the Jacobian Conjecture in any characteristic, in: A. van den Essen (ed.), Automorphisms of A ne Spaces, Proceedings of the conference "Invertible Polynomial Maps", July 4{8, 1994, Cura cao, Caribbean Mathematics Foundation, Kluwer Academic Publishers, 1995.pl_PL
dc.referencesI.V. Arzhantsev, A.P. Petravchuk, Closed polynomials and saturated subalgebras of polynomial algebras, Ukrainian Math. J. 59 (2007), 1783-1790.pl_PL
dc.referencesM. Ayad, Sur les polynômes ƒ(X; Y ) tels que K[ƒ] est intégralement fermé dans K[X; Y ], Acta Arith. 105 (2002), 9-28.pl_PL
dc.referencesD. Daigle, Plane Frobenius sandwiches of degree p, Proc. Amer. Math. Soc. 117 (1993), 885-889.pl_PL
dc.referencesD. Daigle, Locally nilpotent derivations, Lecture notes for the "September School" of Algebraic Geometry, Łukęcin, Poland, September 2003 (unpublished), aix1.uottawa.ca/~ddaigle/.pl_PL
dc.referencesA. van den Essen, An algorithm to compute the invariant ring of a Ga-action on an affine variety, J. Symbolic Comput., 16 (1993), 551-555.pl_PL
dc.referencesA. van den Essen, Polynomial automorphisms and the Jacobian Conjecture, Birkhäuser Verlag, Basel, 2000.pl_PL
dc.referencesA. van den Essen, A. Nowicki, A. Tyc, Generalizations of a lemma of Freudenburg, J. Pure Appl. Algebra 177 (2003), 43-47.pl_PL
dc.referencesG. Freudenburg, A note on the kernel of a locally nilpotent derivation, Proc. Amer. Math. Soc. 124 (1996), 27-29.pl_PL
dc.referencesG. Freudenburg, Algebraic theory of locally nilpotent derivations, Encyclopaedia of Mathematical Sciences 136, Springer Verlag, Berlin, 2006.pl_PL
dc.referencesR. Ganong, Plane Frobenius sandwiches, Proc. Amer. Math. Soc. 84 (1982), 474-478.pl_PL
dc.referencesM. Gerstenhaber, On the Galois theory of inseparable extensions, Bull. Amer. Math. Soc. 70 (1964), 561-566.pl_PL
dc.referencesM. Gerstenhaber, On infinite inseparable extensions of exponent one, Bull. Amer. Math. Soc. 71 (1965), 878-881.pl_PL
dc.referencesD. Goss, Basic structures of function field arithmetic, Springer, Berlin, 1996.pl_PL
dc.referencesN. Jacobson, Lectures in abstract algebra, vol. III, D. Van Nostrand, Princeton, 1964.pl_PL
dc.referencesP. Jędrzejewicz, Rings of constants of p-homogeneous polynomial derivations, Comm. Algebra 31 (2003), 5501-5511.pl_PL
dc.referencesP. Jędrzejewicz, A note on characterizations of rings of constants with respect to derivations, Colloq. Math. 99 (2004), 51-53.pl_PL
dc.referencesP. Jędrzejewicz, On rings of constants of derivations in two variables in positive characteristic, Colloq. Math. 106 (2006), 109-117.pl_PL
dc.referencesP. Jędrzejewicz, Eigenvector p-bases of rings of constants of derivations, Comm. Algebra 36 (2008), 1500-1508.pl_PL
dc.referencesP. Jędrzejewicz, Linear derivations with rings of constants generated by linear forms, Colloq. Math. 113 (2008), 279-286.pl_PL
dc.referencesP. Jędrzejewicz, A characterization of one-element p-bases of rings of constants, Bull. Pol. Acad. Sci. Math. 59 (2011), 19-26.pl_PL
dc.referencesP. Jędrzejewicz, A note on rings of constants of derivations in integral domains, Colloq. Math. 122 (2011), 241-245.pl_PL
dc.referencesP. Jędrzejewicz, Positive characteristic analogs of closed polynomials, Cent. Eur. J. Math. 9 (2011), 50-56.pl_PL
dc.referencesP. Jędrzejewicz, Jacobian conditions for p-bases, Comm. Algebra 40 (2012), 2841-2852.pl_PL
dc.referencesP. Jędrzejewicz, A characterization of Keller maps, J. Pure Appl. Algebra 217 (2013), 165-171.pl_PL
dc.referencesP. Jędrzejewicz, A characterization of p-bases of rings of constants, Cent. Eur. J. Math. 11 (2013), 900-909.pl_PL
dc.referencesP. Jędrzejewicz, A. Nowicki, Subalgebras of polynomial algebras containing prime powers of variables, in: Materiały na XXXII Konferencję Szkoleniową z Geometrii Analitycznej i Algebraicznej Zespolonej, Lódź, 2011, 11-21.pl_PL
dc.referencesP. Jędrzejewicz, A. Nowicki, Polynomial graded subalgebras of polynomial algebras, Comm. Algebra 40 (2012), 2853-2866.pl_PL
dc.referencesT. Kimura, H. Niitsuma, A note on p-basis of a polynomial ring in two variables, SUT J. Math. 25 (1989), 33-38.pl_PL
dc.referencesS. Kuroda, A counterexample to the Forteenth Problem of Hilbert in dimension four, J. Algebra 279 (2004), 126-134.pl_PL
dc.referencesS. Kuroda, Fields defined by locally nilpotent derivations and monomials, J. Algebra 293 (2005), 395–406.pl_PL
dc.referencesJ. Lang, S. Mandal, On Jacobian n-tuples in characteristic p, Rocky Mountain J. Math. 23 (1993), 271–279.pl_PL
dc.referencesW. Li, Remarks on rings of constants of derivations, Proc. Amer. Math. Soc. 107 (1989), 337–340.pl_PL
dc.referencesW. Li, Remarks on rings of constants of derivations II, Comm. Algebra 20 (1992), 2191–2194.pl_PL
dc.referencesH. Matsumura, Commutative algebra, 2nd ed., Benjamin, Reading, 1980.pl_PL
dc.referencesM. Miyanishi, Normal affine subalgebras of a polynomial ring, in: Algebraic and Topological Theories, Kinokuniya, Tokyo, 1985, 37–51.pl_PL
dc.referencesH. Niitsuma, Jacobian matrix and p-basis, TRU Math. 24 (1988), 19–34.pl_PL
dc.referencesH. Niitsuma, Jacobian matrix and p-basis, in: Topics in algebra, 185–188, Banach Center Publ. 26, part 2, PWN, Warszawa 1990.pl_PL
dc.referencesP. Nousiainen, On the Jacobian Problem (thesis), Pennsylvania State University, 1982.pl_PL
dc.referencesA. Nowicki, On the Jacobian equation J (f, g) = 0 for polynomials in k[x, y], Nagoya Math. J. 109 (1988), 151–157.pl_PL
dc.referencesA. Nowicki, Rings and fields of constants for derivations in characteristic zero, J. Pure Appl. Algebra 96 (1994), 47–55.pl_PL
dc.referencesA. Nowicki and M. Nagata, Rings of constants for k-derivations in k[x1, . . . , xn], J. Math. Kyoto Univ. 28 (1988), 111–118.pl_PL
dc.referencesA. Nowicki, J.-M. Strelcyn, Generators of rings of constants for some diagonal deriva- tions in polynomial rings, J. Pure Appl. Algebra 101 (1995), 207–212.pl_PL
dc.referencesS.-I. Okuda, Kernels of derivations in positive characteristic, Hiroshima Math. J. 34 (2004), 1–19.pl_PL
dc.referencesT. Ono, A note on p-bases of a regular affine domain extension, Proc. Amer. Math. Soc. 136 (2008), 3079–3087.pl_PL
dc.referencesA. Płoski, On the irreducibility of polynomials in several complex variables, Bull. Polish Acad. Sci. Math. 39 (1991), 241–247.pl_PL
dc.referencesA. Schinzel, Polynomials with special regard to reducibility, Cambridge University Press, 2000.pl_PL
dc.referencesS. Suzuki, Some types of derivations and their applications to field theory, J. Math. Kyoto Univ. 21 (1981), 375–382.pl_PL
dc.referencesA. Zaks, Dedekind subrings of k[x1, . . . , xn] are rings of polynomials, Israel J. Math., 9 (1971), 285–289.pl_PL
dc.referencesO. Zariski, P. Samuel, Commutative algebra, vol. I, D. Van Nostrand, New York, 1958.pl_PL
dc.referencesA. Nowicki, Polynomial derivations and their rings of constants, Nicolaus Copernicus University, Toruń, 1994, www.mat.umk.pl/~anow/pl_PL
dc.referencesO. Zariski, Interprétations algébrico-géométriques du quatorzième problème de Hilbert, Bull. Sci. Math., 78 (1954), 155-168.pl_PL
dc.contributor.authorEmailpjedrzej@mat.umk.plpl_PL
dc.identifier.doi10.18778/7969-017-6.06


Pliki tej pozycji

Thumbnail
Thumbnail
Thumbnail

Pozycja umieszczona jest w następujących kolekcjach

Pokaż uproszczony rekord

Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska
Poza zaznaczonymi wyjątkami, licencja tej pozycji opisana jest jako Uznanie autorstwa-Użycie niekomercyjne-Bez utworów zależnych 3.0 Polska